A contactless automated dynamic monitoring method for organoid morphology on the time axis

被引:0
作者
Deng, Xun [1 ,2 ,3 ]
Hu, Lun [1 ,2 ,3 ]
Jiang, Zekun [4 ]
Liu, Lu [5 ]
Hu, Peng-Wei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Xinjiang Tech Inst Phys & Chem, Urumqi 830011, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Xinjiang Lab Minor Speech & Language Informat Pro, Urumqi 830011, Peoples R China
[4] Shanghai Artificial Intelligence Res Inst, Shanghai 201100, Peoples R China
[5] Shanghai Roche Pharmaceut Ltd, 1100 Long Dong Ave, Shanghai 201203, Peoples R China
来源
2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023 | 2023年
关键词
Organoids; segmentation; tracking; automated; contactless;
D O I
10.1109/ICDMW60847.2023.00058
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Organoids, as in vitro 3D cultures with structures and functional characteristics similar to corresponding tissues, offer crucial biotechnological support for physiology, pathology, and drug testing. In the field of organoid imaging, the primary approach involves observing the dynamic changes in organoid morphology and movement during cultivation. Currently, there are limited and somewhat restrictive methods for organoid image analysis. Common techniques, such as those based on fluorescence staining, can impact organoid viability. Methods relying on bounding-box detection and tracking fail to capture organoid morphological characteristics, while threshold-based or deep neural network methods often suffer from segmentation inaccuracies. this paper presents the MacrOrga model, which is based on a combination of a multi-axis attention mechanism and convolutional residual networks. MacrOrga represents an innovative approach to organoid segmentation. MacrOrga effectively captures long-distance pixel relationships within organoid images, facilitating precise organoid segmentation. It demonstrates robust generalization capabilities across various datasets. Based on the results of the exact segmentation, the tracking of individual organoids is achieved using the KuhnMunkres algorithm to minimize the cost matrix of organoid assignment. The combination of precise segmentation and tracking functions offers a contactless, automated monitoring method for organoids in drug experiments, physiological assessments, and other research applications.
引用
收藏
页码:412 / 417
页数:6
相关论文
共 43 条
[1]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[2]   Automated brightfield morphometry of 3D organoid populations by OrganoSeg [J].
Borten, Michael A. ;
Bajikar, Sameer S. ;
Sasaki, Nobuo ;
Clevers, Hans ;
Janes, Kevin A. .
SCIENTIFIC REPORTS, 2018, 8
[3]   High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays [J].
Brandenberg, Nathalie ;
Hoehnel, Sylke ;
Kuttler, Fabien ;
Homicsko, Krisztian ;
Ceroni, Camilla ;
Ringel, Till ;
Gjorevski, Nikolce ;
Schwank, Gerald ;
Coukos, George ;
Turcatti, Gerardo ;
Lutolf, Matthias P. .
NATURE BIOMEDICAL ENGINEERING, 2020, 4 (09) :863-+
[4]   High-resolution 3D imaging of fixed and cleared organoids [J].
Dekkers, Johanna F. ;
Alieva, Maria ;
Wellens, Lianne M. ;
Ariese, Hendrikus C. R. ;
Jamieson, Paul R. ;
Vonk, Annelotte M. ;
Amatngalim, Gimano D. ;
Hu, Huili ;
Oost, Koen C. ;
Snippert, Hugo J. G. ;
Beekman, Jeffrey M. ;
Wehrens, Ellen J. ;
Visvader, Jane E. ;
Clevers, Hans ;
Rios, Anne C. .
NATURE PROTOCOLS, 2019, 14 (06) :1756-1771
[5]   Organoids in cancer research [J].
Drost, Jarno ;
Clevers, Hans .
NATURE REVIEWS CANCER, 2018, 18 (07) :407-418
[6]   Organoids as an in vitro model of human development and disease [J].
Fatehullah, Aliya ;
Tan, Si Hui ;
Barker, Nick .
NATURE CELL BIOLOGY, 2016, 18 (03) :246-254
[7]   Dual Attention Network for Scene Segmentation [J].
Fu, Jun ;
Liu, Jing ;
Tian, Haijie ;
Li, Yong ;
Bao, Yongjun ;
Fang, Zhiwei ;
Lu, Hanqing .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3141-3149
[8]   Rethinking organoid technology through bioengineering [J].
Garreta, Elena ;
Kamm, Roger D. ;
Chuva de Sousa Lopes, Susana M. ;
Lancaster, Madeline A. ;
Weiss, Ron ;
Trepat, Xavier ;
Hyun, Insoo ;
Montserrat, Nuria .
NATURE MATERIALS, 2021, 20 (02) :145-155
[9]   Tissue geometry drives deterministic organoid patterning [J].
Gjorevski, N. ;
Nikolaev, M. ;
Brown, T. E. ;
Mitrofanova, O. ;
Brandenberg, N. ;
DelRio, F. W. ;
Yavitt, F. M. ;
Liberali, P. ;
Anseth, K. S. ;
Lutolf, M. P. .
SCIENCE, 2022, 375 (6576) :40-+
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778