DGFormer: a physics-guided station level weather forecasting model with dynamic spatial-temporal graph neural network

被引:4
|
作者
Xu, Zhewen [1 ]
Wei, Xiaohui [1 ,2 ]
Hao, Jieyun [1 ]
Han, Junze [1 ]
Li, Hongliang [1 ,2 ]
Liu, Changzheng [3 ]
Li, Zijian [1 ]
Tian, Dongyuan [1 ]
Zhang, Nong [1 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Qianjin St, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Qianjin St, Changchun 130012, Jilin, Peoples R China
[3] China Meteorol Adm, Natl Climate Ctr, Key Lab Weather Predict Studies, South Zhongguancun St, Beijing 100081, Peoples R China
关键词
Weather forecasting; Spatial-temporal network; Physics-guided model; Dynamic graph neural network; HUMAN MOBILITY; PREDICTION;
D O I
10.1007/s10707-024-00511-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, there has been an increased interest in understanding and predicting the weather using weather station data with Spatial-Temporal Graph Neural Networks (STGNN). However, it has large prediction errors as a result of the inherent non-linearities and the influence of dynamic spatio-temporal auto-correlation. Using a continuously-varying graph topology chronologically, while embedding domain knowledge to enforce validity, can effectively resolve the issue, but the implementation of such concept constitutes an interdisciplinary challenge for researchers. A Dynamic Graph Former (DGFormer) model is proposed to address this challenge. It combines a topology learner through a deep generative layer with domain knowledge enhancement inserted into the STGNN structure, where the derived physics-guided method allows for an efficient integration with the earth system. For capture of the optimal topology, we merge a node-embedding-based similarity metric learning and the superposition principle as physical assistants into the dynamic graph module. We evaluate our model with a real-world weather dataset on short-term (12 hours) and medium-range (360 hours) prediction tasks. DGFormer achieves outstanding performance with obvious improvements by up to 34.84% at short-term prediction and by up to 23.25% at medium-range prediction compared with the state-of-the-art methods. We also conducted detailed analyses for cities in three regions and visualized the dynamic graph, revealing the characteristics, advantages, and graph visualization of our model.
引用
收藏
页码:499 / 533
页数:35
相关论文
共 50 条
  • [21] Traffic Flow Prediction Based on Dynamic Graph Spatial-Temporal Neural Network
    Jiang, Ming
    Liu, Zhiwei
    MATHEMATICS, 2023, 11 (11)
  • [22] Spatial-Temporal Dynamic Graph Convolution Neural Network for Air Quality Prediction
    Xiaocao, Ouyang
    Yang, Yan
    Zhang, Yiling
    Zhou, Wei
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [23] Dynamic multi-granularity spatial-temporal graph attention network for traffic forecasting
    Sang, Wei
    Zhang, Huiliang
    Kang, Xianchang
    Nie, Ping
    Meng, Xin
    Boulet, Benoit
    Sun, Pei
    INFORMATION SCIENCES, 2024, 662
  • [24] Attentive graph structure learning embedded in deep spatial-temporal graph neural network for traffic forecasting
    Bikram, Pritam
    Das, Shubhajyoti
    Biswas, Arindam
    APPLIED INTELLIGENCE, 2024, 54 (03) : 2716 - 2749
  • [25] Attentive graph structure learning embedded in deep spatial-temporal graph neural network for traffic forecasting
    Pritam Bikram
    Shubhajyoti Das
    Arindam Biswas
    Applied Intelligence, 2024, 54 : 2716 - 2749
  • [26] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    arXiv, 2023,
  • [27] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2023, : 448 - 458
  • [28] Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
    Zhang, Xiyue
    Huang, Chao
    Xu, Yong
    Xia, Lianghao
    Dai, Peng
    Bo, Liefeng
    Zhang, Junbo
    Zheng, Yu
    35th AAAI Conference on Artificial Intelligence, AAAI 2021, 2021, 17A : 15008 - 15015
  • [29] Localised Adaptive Spatial-Temporal Graph Neural Network
    Duan, Wenying
    He, Xiaoxi
    Zhou, Zimu
    Thiele, Lothar
    Rao, Hong
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 448 - 458
  • [30] Spatial-Temporal Bipartite Graph Attention Network for Traffic Forecasting
    Lakma, Dimuthu
    Perera, Kushani
    Borovica-Gajic, Renata
    Karunasekera, Shanika
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 68 - 80