The recently developed Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2), furnished with the Advanced Terrain Laser Altimeter System (ATLAS), delivers considerable benefits in providing accurate bathymetric data across extensive geographical regions. By integrating active lidar-derived reference seawater depth data with passive optical remote sensing imagery, efficient bathymetry mapping is facilitated. In recent times, machine learning models are frequently used to define the nonlinear connection between remote sensing spectral data and water depths, which consequently results in the creation of bathymetric maps. A salient model among these is the convolutional neural network (CNN), which effectively integrates contextual information concerning bathymetric points. However, current CNN models and other machine learning approaches mainly concentrate on recognizing mathematical relationships within the data to determine a water depth function and remote sensing spectral data, while oftentimes disregarding the physical light propagation process in seawater before reaching the seafloor. This study presents a physics-informed CNN (PI-CNN) model which incorporates radiative transfer-based data into the CNN structure. By including the shallow water double-band radiative transfer physical term (swdrtt), this model enhances seawater spectral features and also considers the context surroundings of bathymetric pixels. The effectiveness and reliability of our proposed PI-CNN model are verified using in situ data from St. Croix and St. Thomas, validating its correctness in generating bathymetric maps with a broad experimental R2 accuracy exceeding 95% and remaining errors below 1.6 m. Preliminary results suggest that our PI-CNN model surpasses conventional methodologies.
机构:
Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China
Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China
Univ New South Wales, Sch Sci, Canberra, BC 2610, AustraliaShandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China
Ma, Yue
Xu, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Coll Marine Sci & Engn, Nanjing 210023, Peoples R ChinaShandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China
Xu, Nan
Liu, Zhen
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Sci & Technol, Coll Ocean Sci & Engn, Qingdao 266590, Peoples R ChinaShandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China
Liu, Zhen
Yang, Bisheng
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430072, Peoples R ChinaShandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China
Yang, Bisheng
Yang, Fanlin
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R ChinaShandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China
Yang, Fanlin
Wang, Xiao Hua
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch Sci, Canberra, BC 2610, Australia
Univ New South Wales, Sino Australian Res Consortium Coastal Management, Canberra, BC 2610, AustraliaShandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China
Wang, Xiao Hua
Li, Song
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R ChinaShandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R China
机构:
Nanjing Normal Univ, Coll Marine Sci & Engn, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Coll Marine Sci & Engn, Nanjing 210023, Peoples R China
Xu, Nan
Ma, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430072, Peoples R China
Chinese Acad Sci, CAS Key Lab Spectral Imaging Technol, Xian 710119, Peoples R ChinaNanjing Normal Univ, Coll Marine Sci & Engn, Nanjing 210023, Peoples R China
Ma, Xin
Ma, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China
Univ New South Wales, Sino Australian Res Consortium Coastal Management, Sch Sci, Canberra, NSW 2610, AustraliaNanjing Normal Univ, Coll Marine Sci & Engn, Nanjing 210023, Peoples R China
Ma, Yue
Zhao, Pufan
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R ChinaNanjing Normal Univ, Coll Marine Sci & Engn, Nanjing 210023, Peoples R China
Zhao, Pufan
Yang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R ChinaNanjing Normal Univ, Coll Marine Sci & Engn, Nanjing 210023, Peoples R China
Yang, Jian
Wang, Xiao Hua
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sino Australian Res Consortium Coastal Management, Sch Sci, Canberra, NSW 2610, Australia
Ocean Univ China, Coll Ocean & Atmospher Sci, Qingdao 266100, Peoples R ChinaNanjing Normal Univ, Coll Marine Sci & Engn, Nanjing 210023, Peoples R China
机构:
Hohai Univ, Coll Geog & Remote Sensing, Nanjing 210098, Peoples R ChinaHohai Univ, Coll Geog & Remote Sensing, Nanjing 210098, Peoples R China
Xu, Nan
Wang, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ Sci & Technol, Coll Geodesy & Geomat, Qingdao 266590, Peoples R ChinaHohai Univ, Coll Geog & Remote Sensing, Nanjing 210098, Peoples R China
Wang, Lin
Zhang, Han-Su
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Chinese Med, Sch Artificial Intelligence & Informat Technol, Nanjing 210023, Peoples R ChinaHohai Univ, Coll Geog & Remote Sensing, Nanjing 210098, Peoples R China
Zhang, Han-Su
Tang, Shilin
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, South China Sea Inst Oceanol, State Key Lab Trop Oceanog, Guangzhou 511458, Peoples R ChinaHohai Univ, Coll Geog & Remote Sensing, Nanjing 210098, Peoples R China
Tang, Shilin
Mo, Fan
论文数: 0引用数: 0
h-index: 0
机构:
Minist Nat Resources, Land Satellite Remote Sensing Applicat Ctr, Beijing 100048, Peoples R ChinaHohai Univ, Coll Geog & Remote Sensing, Nanjing 210098, Peoples R China
Mo, Fan
Ma, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430072, Peoples R ChinaHohai Univ, Coll Geog & Remote Sensing, Nanjing 210098, Peoples R China