Transient Analysis of Fluid Flow through a Closing Blowout Preventer Using Coupled Domain Computational Fluid Dynamics

被引:0
|
作者
Barreca, D. [1 ]
Tyagi, M. [2 ]
机构
[1] US Coastal Hydraul Lab, Vicksburg, MS USA
[2] Louisiana State Univ, Baton Rouge, LA 70803 USA
关键词
CFD ANALYSIS; VALVE;
D O I
暂无
中图分类号
TE [石油、天然气工业];
学科分类号
0820 ;
摘要
Erosion and forces on rams may prevent a blowout preventer (BOP) from sealing a well. Analyzing the flow field throughout a BOP may provide insight into these flowing effects on the inability of a BOP to seal the well. 3D transient simulation of fluid flow throughout closing BOP fluid domains is demonstrated using computational fluid dynamics (CFD). Simulation may be used to analyze the transient stress, pressure, and velocity fields throughout a BOP domain as it is closing. Many challenges exist in simulating a closing BOP using CFD, including boundary conditions and treatment of dynamic meshing. Solutions to those challenges are presented in this work. CFD simulations are carried out using ANSYS Fluent v19.2 (ANSYS, Canonsburg, Pennsylvania, USA). For inlet boundary conditions to the CFD domain, the CFD simulations are explicitly coupled with a 1D wellbore simulator. The 1D wellbore simulator provides a connection between the BOP and constant pressure reservoir. Numerical instability is present during this coupling process. An implementation for dealing with this instability is presented. An example validation case is presented to demonstrate the accuracy of CFD for pressure fields throughout valves. A second 2D axisymmetric case is shown to demonstrate the meshing and coupling simulation process. A third case, simulation through a 3D shear geometry is then presented to show the applicability of the process to a more complex geometric design. Velocity and stress fields are plotted to show the practicality of CFD in analyzing the probable causes of failure in BOP closures.
引用
收藏
页码:618 / 630
页数:13
相关论文
共 50 条