A Bi-GRU-based encoder-decoder framework for multivariate time series forecasting

被引:8
|
作者
Balti, Hanen [1 ]
Ben Abbes, Ali [1 ]
Farah, Imed Riadh [1 ]
机构
[1] Univ Manouba, RIADI Lab, ENSI, Manouba 2010, Tunisia
关键词
Deep learning; Multivariate time series; Encoder-decoder; Drought forecasting; PREDICTION; NORTH;
D O I
10.1007/s00500-023-09531-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Drought forecasting is crucial for minimizing the effects of drought, alerting people to its dangers, and assisting decision-makers in taking preventative action. This article suggests an encoder-decoder framework for multivariate times series (EDFMTS) forecasting. EDFMTS is composed of three layers: a temporal attention context layer, a gated recurrent unit (GRU)-based decoder component, and a bidirectional gated recurrent unit (Bi-GRU)-based encoder component. The proposed framework was evaluated usingmultivariate gathered from various sources in China (remote-sensing sensors, climate sensors, biophysical sensors, and so on). According to experimental results, the proposed framework outperformed the baselinemethods in univariate and multivariate times series (TS) forecasting. The correlation coefficient of determination (R-2), root-meansquared error (RMSE), and the mean absolute error (MAE) were used for the evaluation of the framework performance. The R-2, RMSE, and MAE are 0.94, 0.20, and 0.13, respectively, for EDFMTS. In contrast, the RMSE provided by autoregressive integrated moving average (ARIMA), PROPHET, long short-term memory (LSTM), GRU and convolutional neural network (CNN)-LSTM are 0.72, 0.92, 0.36, 0.40, and 0.27, respectively.
引用
收藏
页码:6775 / 6786
页数:12
相关论文
共 50 条
  • [41] Skin lesion segmentation using an improved framework of encoder-decoder based convolutional neural network
    Kaur, Ranpreet
    GholamHosseini, Hamid
    Sinha, Roopak
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2022, 32 (04) : 1143 - 1158
  • [42] Foreformer: an enhanced transformer-based framework for multivariate time series forecasting
    Yang, Ye
    Lu, Jiangang
    APPLIED INTELLIGENCE, 2023, 53 (10) : 12521 - 12540
  • [43] Remaining useful life prediction for equipment based on LSTM encoder-decoder method
    Zhao Z.-H.
    Li Q.
    Li L.-H.
    Zhao J.-J.
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2021, 21 (06): : 269 - 277
  • [44] Online ship speed optimization based on BiLSTM encoder-decoder
    Yu, Minghui
    Dai, Sida
    He, Qinglin
    Hu, Wenbo
    Fan, Guowei
    JOURNAL OF THE FRANKLIN INSTITUTE, 2023, 360 (10) : 6653 - 6668
  • [45] Long-Term Traffic Prediction Based on LSTM Encoder-Decoder Architecture
    Wang, Zhumei
    Su, Xing
    Ding, Zhiming
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (10) : 6561 - 6571
  • [46] Self-Attention based encoder-Decoder for multistep human density prediction
    Violos, John
    Theodoropoulos, Theodoros
    Maroudis, Angelos-Christos
    Leivadeas, Aris
    Tserpes, Konstantinos
    JOURNAL OF URBAN MOBILITY, 2022, 2
  • [47] A deep multivariate time series multistep forecasting network
    Yin, Chenrui
    Dai, Qun
    APPLIED INTELLIGENCE, 2022, 52 (08) : 8956 - 8974
  • [48] A classification method based on encoder-decoder structure with paper content
    Yin, Yi
    Ouyang, Lin
    Wu, Zhixiang
    Yin, Shuifang
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (09)
  • [49] Video Summarization With Attention-Based Encoder-Decoder Networks
    Ji, Zhong
    Xiong, Kailin
    Pang, Yanwei
    Li, Xuelong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (06) : 1709 - 1717
  • [50] A deep multivariate time series multistep forecasting network
    Chenrui Yin
    Qun Dai
    Applied Intelligence, 2022, 52 : 8956 - 8974