A Class of Prescribed Weingarten Curvature Equations for Locally Convex Hypersurfaces with Boundary in Rn+1

被引:0
作者
He, Yan [1 ]
Tu, Qiang [1 ]
Xiang, Ni [1 ]
机构
[1] Hubei Univ, Fac Math & Stat, Hubei Key Lab Appl Math, Wuhan 430062, Peoples R China
基金
中国国家自然科学基金;
关键词
Prescribed Weingarten curvature; Strictly locally convex; The a priori estimates; NONLINEAR ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; PLURISUBHARMONICITY; REGULARITY; MANIFOLDS; DUALITY;
D O I
10.1007/s12220-023-01496-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a class of prescribed Weingarten curvature equations for strictly locally convex hypersurfaces with boundary in Rn+1. Under some sufficient condition, we obtain an existence result by the standard degree theory based on the a prior estimates for the solutions to the prescribed Weingarten curvature equations.
引用
收藏
页数:27
相关论文
共 41 条
[1]  
[Anonymous], 2004, Asian J. Math.
[2]   A microscopic convexity principle for nonlinear partial differential equations [J].
Bian, Baojun ;
Guan, Pengfei .
INVENTIONES MATHEMATICAE, 2009, 177 (02) :307-335
[3]   NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .5. THE DIRICHLET PROBLEM FOR WEINGARTEN HYPERSURFACES [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (01) :47-70
[4]  
Chen C.Q., PREPRINT
[5]   The Lp Minkowski type problem for a class of mixed Hessian quotient equations [J].
Chen, Chuanqiang ;
Xu, Lu .
ADVANCES IN MATHEMATICS, 2022, 411
[6]   Pogorelov type estimates for a class of Hessian quotient equations [J].
Chen, Li ;
Tu, Qiang ;
Xiang, Ni .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 282 :272-284
[7]   A class of Hessian quotient equations in Euclidean space [J].
Chen, Xiaojuan ;
Tu, Qiang ;
Xiang, Ni .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (12) :11172-11194
[8]   Curvature estimates for a class of Hessian type equations [J].
Chu, Jianchun ;
Jiao, Heming .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (03)
[9]   Radial graphs of constant curvature and prescribed boundary [J].
Cruz, Flavio F. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (03)
[10]  
EVANS LC, 1982, COMMUN PUR APPL MATH, V35, P334