The effect of selective laser melting process parameters and remelting scanning strategy on relative density and surface hardness of stainless steel 316L

被引:5
|
作者
Mohseni, Maede [1 ]
Sadeghi, Mohamad Sina [1 ]
Etefagh, Ardeshir Hemasian [1 ]
Nikouei, Seyyed Mohammad [1 ]
Khajehzadeh, Mohsen [1 ,2 ]
机构
[1] Amirkabir Univ Technol, Dept Mech Engn, Tehran, Iran
[2] Amirkabir Univ Technol, Dept Mech Engn, 424 Hafez Ave, Tehran 158754413, Iran
关键词
Additive manufacturing; selective laser melting; hardness; relative density; Taguchi; MECHANICAL-PROPERTIES; RESIDUAL-STRESS; PARTS; MICROSTRUCTURE; QUALITY;
D O I
10.1177/09544089231207809
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Selective laser melting (SLM) process is the foremost metal additive manufacturing (AM) technology that precisely generates complex geometries from CAD files. Mechanical behavior of printed parts is greatly affected by printing parameters and defining the optimal values of the process parameters to enhance the mechanical properties of components is highly regarded. In this work, four different SLM parameters including scanning speed, laser power, hatch spacing and scan pattern angle were applied to manufacture SS316L parts. For investigating the effect of each parameter and their interactions on hardness and relative density, Taguchi L16 orthogonal array was employed. The influence of part geometry and remelting is also evaluated in order to optimize the hardness and relative density of components. The results exhibited that the laser scanning speed was the most predominant SLM parameter for investigated mechanical properties. Analyzing the regression formula obtained from the results showed that the optimum laser energy density resulted in a 0.37% and 5.38% increase compared to the lowest relative density and hardness, respectively. High remelting energy associated with low remelting scanning speed, caused an 8.5% and 17.9% rise in hardness of squares and triangles, respectively; however, it led 12.5% reduction in hardness for circles. Remelting caused a 2.32% reduction, 2.1% increase and 5.3% rise on relative density for circles, squares and triangles, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Microstructure Analysis of High-Density 316L Stainless Steel Manufactured by Selective Laser Melting Process
    Ara, Ismat
    Azarmi, Fardad
    Tangpong, X. W.
    METALLOGRAPHY MICROSTRUCTURE AND ANALYSIS, 2021, 10 (06) : 754 - 767
  • [22] Effect of scanning speed on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting
    Liu, Jiangwei
    Song, Yanan
    Chen, Chaoyue
    Wang, Xiebin
    Li, Hu
    Zhou, Chang'an
    Wang, Jiang
    Guo, Kai
    Sun, Jie
    MATERIALS & DESIGN, 2020, 186
  • [23] Machine learning for density prediction and process optimization of 316L stainless steel fabricated by selective laser melting
    Hodroj, Abbas
    Bouglia, Redouane
    Ding, Yuehua
    Zghal, Mourad
    JOURNAL OF INTELLIGENT MANUFACTURING, 2025,
  • [24] Effect of layer-by-layer laser remelting process on the microstructure and performance of selective laser melting 316L stainless steel
    Xuehui Chen
    Kai Wen
    Weihao Mu
    Yuxi Zhang
    Shan Huang
    Wei Liu
    The International Journal of Advanced Manufacturing Technology, 2023, 128 : 2221 - 2236
  • [25] The effect of multi-beam strategies on selective laser melting of stainless steel 316L
    Heeling, Thorsten
    Wegener, Konrad
    ADDITIVE MANUFACTURING, 2018, 22 : 334 - 342
  • [26] Effect of layer-by-layer laser remelting process on the microstructure and performance of selective laser melting 316L stainless steel
    Chen, Xuehui
    Wen, Kai
    Mu, Weihao
    Zhang, Yuxi
    Huang, Shan
    Liu, Wei
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 128 (5-6) : 2221 - 2236
  • [27] Property-Graded Stainless Steel 316L by Selective Laser Melting: Characterization & Design
    Parikh, Yash
    Kuttolamadom, Mathew
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (06):
  • [28] Effects of process parameters on surface quality and mechanical performance of 316L stainless steel produced by selective laser melting
    Şener B.
    Çavuşoğlu O.
    Yuce C.
    Optik, 2023, 287
  • [29] The effect of post-processing operations on surface characteristics of 316L stainless steel produced by selective laser melting
    Kaynak, Yusuf
    Kitay, Ozhan
    ADDITIVE MANUFACTURING, 2019, 26 : 84 - 93
  • [30] Effect of Scanning Speed on Surface Roughness and Mechanical Properties of 316L Stainless Steel Prepared by Selective Laser Melting
    Mao Binyang
    Liu Ying
    Ye Jinwen
    Chen Zhengjie
    RARE METAL MATERIALS AND ENGINEERING, 2023, 52 (03) : 860 - 866