k-Submodular Maximization with a Knapsack Constraint and p Matroid Constraints

被引:2
作者
Liu, Qian [1 ]
Yu, Kemin [1 ]
Li, Min [1 ]
Zhou, Yang [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
来源
TSINGHUA SCIENCE AND TECHNOLOGY | 2023年 / 28卷 / 05期
基金
中国国家自然科学基金;
关键词
k-submodularity; knapsack constraint; matroid constraint; approximation algorithm; FUNCTION SUBJECT;
D O I
10.26599/TST.2022.9010039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A k-submodular function is a generalization of a submodular function, its definition domain is extended from the collection of single subsets to the collection of k disjoint subsets. The k-submodular maximization problem has a wide range of applications. In this paper, we propose a nested greedy and local search algorithm for the problem of maximizing a monotone k-submodular function subject to a knapsack constraint and p matroid constraints.
引用
收藏
页码:896 / 905
页数:10
相关论文
共 17 条
  • [1] Bian AA, 2017, PR MACH LEARN RES, V70
  • [2] MAXIMIZING A MONOTONE SUBMODULAR FUNCTION SUBJECT TO A MATROID CONSTRAINT
    Calinescu, Gruia
    Chekuri, Chandra
    Pal, Martin
    Vondrak, Jan
    [J]. SIAM JOURNAL ON COMPUTING, 2011, 40 (06) : 1740 - 1766
  • [3] Ene Alina, 2019, 46 INT C AUT LANG PR
  • [4] Feldman M, 2013, PhD dissertation
  • [5] MONOTONE SUBMODULAR MAXIMIZATION OVER A MATROID VIA NON-OBLIVIOUS LOCAL SEARCH
    Filmus, Yuval
    Ward, Justin
    [J]. SIAM JOURNAL ON COMPUTING, 2014, 43 (02) : 514 - 542
  • [6] APPROXIMABILITY OF MONOTONE SUBMODULAR FUNCTION MAXIMIZATION UNDER CARDINALITY AND MATROID CONSTRAINTS IN THE STREAMING MODEL
    Huang, Chien-Chung
    Kakimura, Naonori
    Mauras, Simon
    Yoshida, Yuichi
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (01) : 355 - 382
  • [7] Iwata S, 2016, P 27 ACM SIAM S DISC, P404
  • [8] Maximization problems of balancing submodular relevance and supermodular diversity
    Liu, Zhicheng
    Guo, Longkun
    Du, Donglei
    Xu, Dachuan
    Zhang, Xiaoyan
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2022, 82 (01) : 179 - 194
  • [9] ANALYSIS OF APPROXIMATIONS FOR MAXIMIZING SUBMODULAR SET FUNCTIONS .1.
    NEMHAUSER, GL
    WOLSEY, LA
    FISHER, ML
    [J]. MATHEMATICAL PROGRAMMING, 1978, 14 (03) : 265 - 294
  • [10] Ohsaka N, 2015, ADV NEUR IN, V28