NeuralPV: A Neural Network Algorithm for PV Power Forecasting

被引:2
作者
Pervez, Imran [1 ]
Shi, Jian [1 ]
Ghazzai, Hakim [1 ]
Massoud, Yehia [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Innovat Technol Labs, Thuwal, Saudi Arabia
来源
2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS | 2023年
关键词
power forecasting; neural networks; multi-layer perceptron; photovoltaic;
D O I
10.1109/ISCAS46773.2023.10181648
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Photovoltaic (PV) forecasting plays a major role in residential and industrial PV installation as well as penetration with the grid. An inaccurate PV power forecasting may result in increased monetary and energy losses. This study proposes a metaheuristic-based strategy for accurate PV power forecasting using a heuristic-based data-driven PV model. The proposed algorithm integrates a dense explorative strategy with the existing PV equation knowledge by a multilayer perceptron (MLP) network with Sigmoid activation functions to predict the best coefficients for the inputs of the data-driven PV model. The proposed method is compared to a recently proposed metaheuristic algorithm, the artificial hummingbird optimizer algorithm (AHOA). The comparison is performed for inside distribution (ID) and out-of-distribution (OOD) irradiance datasets and with varying temperatures. The results prove that the proposed NN-based algorithm achieves higher accuracy in PV power parameter prediction and hence forecasting.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Minutely Active Power Forecasting Models Using Neural Networks
    Kontogiannis, Dimitrios
    Bargiotas, Dimitrios
    Daskalopulu, Aspassia
    SUSTAINABILITY, 2020, 12 (08)
  • [42] A novel maximum power point tracking method for PV systems using artificial neural network
    Noroozian, R.
    Barzideh, F.
    Jalilvand, A.
    Engineering Intelligent Systems, 2013, 21 (04): : 239 - 247
  • [43] PV-Power Forecasting using Machine Learning Techniques
    Al Arafat, Kazi Abdullah
    Creer, Kode
    Debnath, Anjan
    Olowu, Temitayo O.
    Parvez, Imtiaz
    2024 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY, EIT 2024, 2024, : 480 - 484
  • [44] PV-Power Forecasting using Machine Learning Techniques
    Al Arafat, Kazi Abdullah
    Creer, Kode
    Debnath, Anjan
    Olowu, Temitayo O.
    Parvez, Imtiaz
    2024 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY, EIT 2024, 2024, : 280 - 284
  • [45] A sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm
    Kuo, RJ
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 129 (03) : 496 - 517
  • [46] Enhanced artificial neural network inflow forecasting algorithm for run-of-river hydropower plants
    Stokelj, T
    Paravan, D
    Golob, R
    JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 2002, 128 (06) : 415 - 423
  • [47] Forecasting stock price index movement using a constrained deep neural network training algorithm
    Livieris I.E.
    Kotsilieris T.
    Stavroyiannis S.
    Pintelas P.
    Intelligent Decision Technologies, 2020, 14 (03): : 313 - 323
  • [48] Hybrid Local General Regression Neural Network and Harmony Search Algorithm for Electricity Price Forecasting
    Elattar, Ehab E.
    Elsayed, Salah K.
    Farrag, Tamer Ahmed
    IEEE ACCESS, 2021, 9 : 2044 - 2054
  • [49] Forecasting stock price index movement using a constrained deep neural network training algorithm
    Livieris, I. E.
    Kotsilieris, T.
    Stavroyiannis, S.
    Pintelas, P.
    INTELLIGENT DECISION TECHNOLOGIES-NETHERLANDS, 2020, 14 (03): : 313 - 323
  • [50] Dual stream network with attention mechanism for photovoltaic power forecasting
    Khan, Zulfiqar Ahmad
    Hussain, Tanveer
    Baik, Sung Wook
    APPLIED ENERGY, 2023, 338