EVOLUTION EQUATIONS ON TIME-DEPENDENT LEBESGUE SPACES WITH VARIABLE EXPONENTS

被引:0
|
作者
Simsen, Jacson [1 ]
机构
[1] Univ Fed Itajuba, Inst Matemat & Computacao, BR-37500903 Itajuba, MG, Brazil
关键词
Non-autonomous parabolic problems; variable exponents; p-Laplacian; pullback attractors; upper semicontinuity; PULLBACK ATTRACTORS; EXISTENCE;
D O I
10.58997/ejde.2023.50
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the results in Kloeden-Simsen [CPAA 2014] to p(x, t)-Laplacian problems on time-dependent Lebesgue spaces with variable expo-nents. We study the equation partial differential uA (t) div (DA(t, x)|vuA(t)|p(x,t)-2vuA(t)) + |uA(t)|p(x,t)-2uA(t) partial differential t = B(t, uA(t)) on a bounded smooth domain & omega; in R , n> 1, with a homogeneous Neumann boundary condition, where the exponent p(& BULL;) E C(& omega; over bar x [& tau;, T], R+) satisfies min p(x, t) > 2, and & lambda; E [0, oo) is a parameter.We establish the existence and upper semicontinuity of pullback attractors for this equation under the assumption, amongst others, that B is globally Lipschitz in its second variable and DA E L & INFIN;([& tau;, T] x & omega;, R+) is bounded from above and below, monotonically nonincreasing in time and continuous in the parameter & lambda;.
引用
收藏
页数:13
相关论文
共 50 条