A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations

被引:1
|
作者
Wang, Yifei [1 ]
Huang, Jin [1 ]
Li, Hu [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Chengdu Normal Univ, Sch Math, Chengdu 611130, Peoples R China
基金
中国国家自然科学基金;
关键词
Bernoulli polynomial; Variable-order fractional integral equation; Gauss-Jacobi quadrature formula; Convergence analysis; BERNOULLI MATRIX-METHOD; DIFFERENTIAL-EQUATIONS; INTEGRODIFFERENTIAL EQUATIONS; DIFFUSION; COLLOCATION; POLYNOMIALS; APPROXIMATION;
D O I
10.1007/s11075-023-01630-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a combination approach based on Bernoulli polynomials and Gauss-Jacobi quadrature formula is developed to solve the system of nonlinear variable-order fractional Volterra integral equations (V-O-FVIEs). For this, we extend the constant coefficient in the Gauss-Jacobi formula to the variable coefficient and used it in our method. The method converts the system of V-O-FVIEs into the corresponding nonlinear system of algebraic equations. In addition, we use Gronwall inequality and the collectively compact theory to prove the existence and uniqueness of the solution of the original equation and the approximate equation, respectively. The convergence analysis and the error estimation of proposed method are discussed. Finally, some numerical examples illustrate the effectiveness of the method.
引用
收藏
页码:1855 / 1877
页数:23
相关论文
共 50 条
  • [41] Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable-order fractional Brownian motion
    Heydari, M. H.
    Avazzadeh, Z.
    Mahmoudi, M. R.
    CHAOS SOLITONS & FRACTALS, 2019, 124 : 105 - 124
  • [42] An Optimization Wavelet Method for Multi Variable-order Fractional Differential Equations
    Heydari, M. H.
    Hooshmandasl, M. R.
    Cattani, C.
    Hariharan, G.
    FUNDAMENTA INFORMATICAE, 2017, 151 (1-4) : 255 - 273
  • [43] A fast method for variable-order space-fractional diffusion equations
    Jia, Jinhong
    Zheng, Xiangcheng
    Fu, Hongfei
    Dai, Pingfei
    Wang, Hong
    NUMERICAL ALGORITHMS, 2020, 85 (04) : 1519 - 1540
  • [44] A finite difference method for elliptic equations with the variable-order fractional derivative
    Shi, Siyuan
    Hao, Zhaopeng
    Du, Rui
    NUMERICAL ALGORITHMS, 2024,
  • [45] An Iterative Approach to Solve Volterra Nonlinear Integral Equations
    Saadeh, Rania
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (03): : 1491 - 1507
  • [46] Vieta-Lucas polynomials for the coupled nonlinear variable-order fractional Ginzburg-Landau equations
    Heydari, M. H.
    Avazzadeh, Z.
    Razzaghi, M.
    APPLIED NUMERICAL MATHEMATICS, 2021, 165 : 442 - 458
  • [47] Accurate Spectral Algorithms for Solving Variable-order Fractional Percolation Equations
    Abdelkawy, M. A.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2020, 15 (02): : 1004 - 1024
  • [48] On the Numerical Solutions for Nonlinear Volterra-Fredholm Integral Equations
    Darania, Parviz
    Pishbin, Saeed
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [49] An approximate approach for the generalized variable-order fractional pantograph equation
    Avazzadeh, Z.
    Heydari, M. H.
    Mahmoudi, Mohammad Reza
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (04) : 2347 - 2354
  • [50] Solving the Nonlinear Variable Order Fractional Differential Equations by Using Euler Wavelets
    Wang, Yanxin
    Zhu, Li
    Wang, Zhi
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2019, 118 (02): : 339 - 350