A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations

被引:1
|
作者
Wang, Yifei [1 ]
Huang, Jin [1 ]
Li, Hu [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Chengdu Normal Univ, Sch Math, Chengdu 611130, Peoples R China
基金
中国国家自然科学基金;
关键词
Bernoulli polynomial; Variable-order fractional integral equation; Gauss-Jacobi quadrature formula; Convergence analysis; BERNOULLI MATRIX-METHOD; DIFFERENTIAL-EQUATIONS; INTEGRODIFFERENTIAL EQUATIONS; DIFFUSION; COLLOCATION; POLYNOMIALS; APPROXIMATION;
D O I
10.1007/s11075-023-01630-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a combination approach based on Bernoulli polynomials and Gauss-Jacobi quadrature formula is developed to solve the system of nonlinear variable-order fractional Volterra integral equations (V-O-FVIEs). For this, we extend the constant coefficient in the Gauss-Jacobi formula to the variable coefficient and used it in our method. The method converts the system of V-O-FVIEs into the corresponding nonlinear system of algebraic equations. In addition, we use Gronwall inequality and the collectively compact theory to prove the existence and uniqueness of the solution of the original equation and the approximate equation, respectively. The convergence analysis and the error estimation of proposed method are discussed. Finally, some numerical examples illustrate the effectiveness of the method.
引用
收藏
页码:1855 / 1877
页数:23
相关论文
共 50 条
  • [31] A Fractional Order Collocation Method for Second Kind Volterra Integral Equations with Weakly Singular Kernels
    Cai, Haotao
    Chen, Yanping
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (02) : 970 - 992
  • [32] Jacobi collocation scheme for variable-order fractional reaction-subdiffusion equation
    Hafez, R. M.
    Youssri, Y. H.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04) : 5315 - 5333
  • [33] NUMERICAL METHODS FOR THE VARIABLE-ORDER FRACTIONAL ADVECTION-DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM
    Zhuang, P.
    Liu, F.
    Anh, V.
    Turner, I.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (03) : 1760 - 1781
  • [34] Analysis of a nonlinear variable-order fractional stochastic differential equation
    Zheng, Xiangcheng
    Zhang, Zhongqiang
    Wang, Hong
    APPLIED MATHEMATICS LETTERS, 2020, 107 (107)
  • [35] A numerical approach for solving fractional order pantograph mixed Volterra-Fredholm delay-integro-differential equations
    Wang, Yifei
    Zhang, Li
    Li, Hu
    NUMERICAL ALGORITHMS, 2025,
  • [37] AN hp-SPECTRAL COLLOCATION METHOD FOR NONLINEAR VOLTERRA INTEGRAL EQUATIONS WITH VANISHING VARIABLE DELAYS
    Wang Zhong-Qing
    Sheng Chang-Tao
    MATHEMATICS OF COMPUTATION, 2016, 85 (298) : 635 - 666
  • [38] On spectral numerical method for variable-order partial differential equations
    Shah, Kamal
    Naz, Hafsa
    Sarwar, Muhammad
    Abdeljawad, Thabet
    AIMS MATHEMATICS, 2022, 7 (06): : 10422 - 10438
  • [39] The performance of a numerical scheme on the variable-order time-fractional advection-reaction-subdiffusion equations
    Kheirkhah, Farnaz
    Hajipour, Mojtaba
    Baleanu, Dumitru
    APPLIED NUMERICAL MATHEMATICS, 2022, 178 : 25 - 40
  • [40] Accurate spectral algorithm for two-dimensional variable-order fractional percolation equations
    Abdelkawy, Mohamed A.
    Mahmoud, Emad E.
    Abualnaja, Kholod M.
    Abdel-Aty, Abdel-Haleem
    Kumar, Sunil
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 6228 - 6238