Differentiable Control for Adaptive Wake Steering

被引:0
作者
Adcock, Christiane [1 ,2 ]
Iaccarino, Gianluca [1 ]
King, Jennifer [2 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
来源
2023 AMERICAN CONTROL CONFERENCE, ACC | 2023年
关键词
COMMERCIAL WIND FARM; FIELD CAMPAIGN; MODEL;
D O I
10.23919/ACC55779.2023.10156112
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wake steering yaws upstream wind turbines to deflect their wakes from downstream turbines, increasing the total power produced by the wind farm. Most wake steering methods generate lookup tables offline which map a set of wind farm conditions, such as wind speed, to yaw offset angles for each turbine in a farm. These tables assume all turbines are operational and can be significantly non-optimal when one or more turbines shutdown-as they often do because of low wind speed, routine maintenance, or emergency maintenance. We present a new wake steering method that adapts to turbine status. Using a hybrid model- and learning-based method, differentiable control, we train a neural network to determine yaw offset angles from conditions including turbine status (active/inactive). Unlike the lookup table approach, differentiable control does not solve an optimization problem for each combination of turbine status in a farm; including learning in the method allows it to generalize. We present results for both standard wake steering (all turbines active) and adaptive wake steering (some turbines active). We find that differentiable control has comparable accuracy as and an order of magnitude faster offline compute time than the lookup table approach. Differentiable control enables adaptive wake steering through computationally efficient training and rapid online evaluation.
引用
收藏
页码:165 / 170
页数:6
相关论文
共 26 条
[1]   Analysis of control-oriented wake modeling tools using lidar field results [J].
Annoni, Jennifer ;
Fleming, Paul ;
Scholbrock, Andrew ;
Roadman, Jason ;
Dana, Scott ;
Adcock, Christiane ;
Porte-Agel, Fernando ;
Raach, Steffen ;
Haizmann, Florian ;
Schlipf, David .
WIND ENERGY SCIENCE, 2018, 3 (02) :819-831
[2]   Reinforced model predictive control (RL-MPC) for building energy management [J].
Arroyo, Javier ;
Manna, Carlo ;
Spiessens, Fred ;
Helsen, Lieve .
APPLIED ENERGY, 2022, 309
[3]   Experimental and theoretical study of wind turbine wakes in yawed conditions [J].
Bastankhah, Majid ;
Porte-Agel, Fernando .
JOURNAL OF FLUID MECHANICS, 2016, 806 :506-541
[4]  
Bay CJ, 2018, P AMER CONTR CONF, P682, DOI 10.23919/ACC.2018.8431764
[5]   The revised FLORIDyn model: implementation of heterogeneous flow and the Gaussian wake [J].
Becker, Marcus ;
Ritter, Bastian ;
Doekemeijer, Bart ;
van der Hoek, Daan ;
Konigorski, Ulrich ;
Allaerts, Dries ;
van Wingerden, Jan-Willem .
WIND ENERGY SCIENCE, 2022, 7 (06) :2163-2179
[6]  
Biagioni D, 2022, Arxiv, DOI arXiv:2210.10203
[7]   Wind turbine reliability data review and impacts on levelised cost of energy [J].
Dao, Cuong ;
Kazemtabrizi, Behzad ;
Crabtree, Christopher .
WIND ENERGY, 2019, 22 (12) :1848-1871
[8]  
Drgona J., 2022, ARXIV
[9]   Continued results from a field campaign of wake steering applied at a commercial wind farm - Part 2 [J].
Fleming, Paul ;
King, Jennifer ;
Simley, Eric ;
Roadman, Jason ;
Scholbrock, Andrew ;
Murphy, Patrick ;
Lundquist, Julie K. ;
Moriarty, Patrick ;
Fleming, Katherine ;
van Dam, Jeroen ;
Bay, Christopher ;
Mudafort, Rafael ;
Jager, David ;
Skopek, Jason ;
Scott, Michael ;
Ryan, Brady ;
Guernsey, Charles ;
Brake, Dan .
WIND ENERGY SCIENCE, 2020, 5 (03) :945-958
[10]   Initial results from a field campaign of wake steering applied at a commercial wind farm - Part 1 [J].
Fleming, Paul ;
King, Jennifer ;
Dykes, Katherine ;
Simley, Eric ;
Roadman, Jason ;
Scholbrock, Andrew ;
Murphy, Patrick ;
Lundquist, Julie K. ;
Moriarty, Patrick ;
Fleming, Katherine ;
van Dam, Jeroen ;
Bay, Christopher ;
Mudafort, Rafael ;
Lopez, Hector ;
Skopek, Jason ;
Scott, Michael ;
Ryan, Brady ;
Guernsey, Charles ;
Brake, Dan .
WIND ENERGY SCIENCE, 2019, 4 (02) :273-285