Generation of genuine entanglement up to 51 superconducting qubits

被引:56
作者
Cao, Sirui [1 ,2 ,3 ,4 ,5 ]
Wu, Bujiao [6 ,7 ]
Chen, Fusheng [1 ,2 ,3 ,4 ,5 ]
Gong, Ming [1 ,2 ,3 ,4 ,5 ]
Wu, Yulin [1 ,2 ,3 ,4 ,5 ]
Ye, Yangsen [1 ,2 ,3 ,4 ,5 ]
Zha, Chen [1 ,2 ,3 ,4 ,5 ]
Qian, Haoran [1 ,2 ,3 ,5 ]
Ying, Chong [1 ,2 ,3 ,4 ,5 ]
Guo, Shaojun [1 ,2 ,3 ,4 ,5 ]
Zhu, Qingling [1 ,2 ,3 ,4 ,5 ]
Huang, He-Liang [1 ,2 ,3 ,5 ]
Zhao, Youwei [1 ,2 ,3 ,4 ,5 ]
Li, Shaowei [1 ,2 ,3 ,4 ,5 ]
Wang, Shiyu [1 ,2 ,3 ,4 ,5 ]
Yu, Jiale [1 ,2 ,3 ,4 ,5 ]
Fan, Daojin [1 ,2 ,3 ,4 ,5 ]
Wu, Dachao [1 ,2 ,3 ,5 ]
Su, Hong [1 ,2 ,3 ,5 ]
Deng, Hui [1 ,2 ,3 ,5 ]
Rong, Hao [1 ,3 ,5 ]
Li, Yuan [1 ,3 ,5 ]
Zhang, Kaili [1 ,2 ,3 ,5 ]
Chung, Tung-Hsun [1 ,2 ,3 ,4 ,5 ]
Liang, Futian [1 ,2 ,3 ,4 ,5 ]
Lin, Jin [1 ,2 ,3 ,4 ,5 ]
Xu, Yu [1 ,3 ,5 ]
Sun, Lihua [1 ,3 ,5 ]
Guo, Cheng [1 ,3 ,5 ]
Li, Na [1 ,2 ,3 ,5 ]
Huo, Yong-Heng [1 ,2 ,3 ,5 ]
Peng, Cheng-Zhi [1 ,3 ,5 ]
Lu, Chao-Yang [1 ,3 ,5 ]
Yuan, Xiao [5 ,6 ,7 ]
Zhu, Xiaobo [1 ,2 ,3 ,4 ,5 ]
Pan, Jian-Wei [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Hefei, Peoples R China
[2] Univ Sci & Technol China, Sch Phys Sci, Hefei, Peoples R China
[3] Univ Sci & Technol China, Shanghai Res Ctr Quantum Sci, Shanghai, Peoples R China
[4] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phys, Shanghai, Peoples R China
[5] Univ Sci & Technol China, Hefei Natl Lab, Hefei, Peoples R China
[6] Peking Univ, Ctr Frontiers Comp Studies, Beijing, Peoples R China
[7] Peking Univ, Sch Comp Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
SCHRODINGER CAT STATES; QUANTUM SUPREMACY;
D O I
10.1038/s41586-023-06195-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Scalable generation of genuine multipartite entanglement with an increasing number of qubits is important for both fundamental interest and practical use in quantum-information technologies(1,2.) On the one hand, multipartite entanglement shows a strong contradiction between the prediction of quantum mechanics and local realization and can be used for the study of quantum-to-classical transition(3,4). On the other hand, realizing large-scale entanglement is a benchmark for the quality and controllability of the quantum system and is essential for realizing universal quantum computing(5-8). However, scalable generation of genuine multipartite entanglement on a state-of-the-art quantum device can be challenging, requiring accurate quantum gates and efficient verification protocols. Here we show a scalable approach for preparing and verifying intermediate-scale genuine entanglement on a 66-qubit superconducting quantum processor. We used high-fidelity parallel quantum gates and optimized the fidelitites of parallel single- and two-qubit gates to be 99.91% and 99.05%, respectively. With efficient randomized fidelity estimation9, we realized 51-qubit one-dimensional and 30-qubit two-dimensional cluster states and achieved fidelities of 0.637 +/- 0.030 and 0.671 +/- 0.006, respectively. On the basis of high-fidelity cluster states, we further show a proof-of-principle realization of measurement-based variational quantum eigensolver10 for perturbed planar codes. Our work provides a feasible approach for preparing and verifying entanglement with a few hundred qubits, enabling medium-scale quantum computing with superconducting quantum systems.
引用
收藏
页码:738 / +
页数:15
相关论文
共 34 条
  • [1] Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits
    Andersen, Christian Kraglund
    Remrm, Ants
    Lazar, Stefania
    Krinner, Sebastian
    Heinsoo, Johannes
    Besse, Jean-Claude
    Gabureac, Mihai
    Wallraff, Andreas
    Eichler, Christopher
    [J]. NPJ QUANTUM INFORMATION, 2019, 5
  • [2] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [3] Mitigating measurement errors in multiqubit experiments
    Bravyi, Sergey
    Sheldon, Sarah
    Kandala, Abhinav
    Mckay, David C.
    Gambetta, Jay M.
    [J]. PHYSICAL REVIEW A, 2021, 103 (04)
  • [4] Briegel HJ, 2009, NAT PHYS, V5, P19, DOI [10.1038/nphys1157, 10.1038/NPHYS1157]
  • [5] Quantum Simulators
    Buluta, Iulia
    Nori, Franco
    [J]. SCIENCE, 2009, 326 (5949) : 108 - 111
  • [6] Can quantum-mechanical description of physical reality be considered complete?
    Einstein, A
    Podolsky, B
    Rosen, N
    [J]. PHYSICAL REVIEW, 1935, 47 (10): : 0777 - 0780
  • [7] Measurement-Based Variational Quantum Eigensolver
    Ferguson, R. R.
    Dellantonio, L.
    Al Balushi, A.
    Jansen, K.
    Dur, W.
    Muschik, C. A.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (22)
  • [8] Direct Fidelity Estimation from Few Pauli Measurements
    Flammia, Steven T.
    Liu, Yi-Kai
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (23)
  • [9] Giovannetti V, 2011, NAT PHOTONICS, V5, P222, DOI [10.1038/nphoton.2011.35, 10.1038/NPHOTON.2011.35]
  • [10] Genuine 12-Qubit Entanglement on a Superconducting Quantum Processor
    Gong, Ming
    Chen, Ming-Cheng
    Zheng, Yarui
    Wang, Shiyu
    Zha, Chen
    Deng, Hui
    Yan, Zhiguang
    Rong, Hao
    Wu, Yulin
    Li, Shaowei
    Chen, Fusheng
    Zhao, Youwei
    Liang, Futian
    Lin, Jin
    Xu, Yu
    Guo, Cheng
    Sun, Lihua
    Castellano, Anthony D.
    Wang, Haohua
    Peng, Chengzhi
    Lu, Chao-Yang
    Zhu, Xiaobo
    Pan, Jian-Wei
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (11)