Privacy-Enhancing Digital Contact Tracing with Machine Learning for Pandemic Response: A Comprehensive Review

被引:15
作者
Hang, Ching-Nam [1 ]
Tsai, Yi-Zhen [2 ]
Yu, Pei-Duo [3 ]
Chen, Jiasi [2 ]
Tan, Chee-Wei [4 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[2] Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA
[3] Chung Yuan Christian Univ, Dept Appl Math, Taoyuan City 320314, Taiwan
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
关键词
digital contact tracing; COVID-19; computational epidemiology; machine learning; COVID-19; NETWORK; CHALLENGES; OUTBREAKS; EPIDEMIC; MODELS;
D O I
10.3390/bdcc7020108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapid global spread of the coronavirus disease (COVID-19) has severely impacted daily life worldwide. As potential solutions, various digital contact tracing (DCT) strategies have emerged to mitigate the virus's spread while maintaining economic and social activities. The computational epidemiology problems of DCT often involve parameter optimization through learning processes, making it crucial to understand how to apply machine learning techniques for effective DCT optimization. While numerous research studies on DCT have emerged recently, most existing reviews primarily focus on DCT application design and implementation. This paper offers a comprehensive overview of privacy-preserving machine learning-based DCT in preparation for future pandemics. We propose a new taxonomy to classify existing DCT strategies into forward, backward, and proactive contact tracing. We then categorize several DCT apps developed during the COVID-19 pandemic based on their tracing strategies. Furthermore, we derive three research questions related to computational epidemiology for DCT and provide a detailed description of machine learning techniques to address these problems. We discuss the challenges of learning-based DCT and suggest potential solutions. Additionally, we include a case study demonstrating the review's insights into the pandemic response. Finally, we summarize the study's limitations and highlight promising future research directions in DCT.
引用
收藏
页数:36
相关论文
共 177 条
[1]   Deep Learning with Differential Privacy [J].
Abadi, Martin ;
Chu, Andy ;
Goodfellow, Ian ;
McMahan, H. Brendan ;
Mironov, Ilya ;
Talwar, Kunal ;
Zhang, Li .
CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, :308-318
[2]   Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong [J].
Adam, Dillon C. ;
Wu, Peng ;
Wong, Jessica Y. ;
Lau, Eric H. Y. ;
Tsang, Tim K. ;
Cauchemez, Simon ;
Leung, Gabriel M. ;
Cowling, Benjamin J. .
NATURE MEDICINE, 2020, 26 (11) :1714-+
[3]   Review of Big Data Analytics, Artificial Intelligence and Nature-Inspired Computing Models towards Accurate Detection of COVID-19 Pandemic Cases and Contact Tracing [J].
Agbehadji, Israel Edem ;
Awuzie, Bankole Osita ;
Ngowi, Alfred Beati ;
Millham, Richard C. .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (15) :1-16
[4]   Global User-Level Perception of COVID-19 Contact Tracing Applications: Data-Driven Approach Using Natural Language Processing [J].
Ahmad, Kashif ;
Alam, Firoj ;
Qadir, Junaid ;
Qolomany, Basheer ;
Khan, Imran ;
Khan, Talhat ;
Suleman, Muhammad ;
Said, Naina ;
Hassan, Syed Zohaib ;
Gul, Asma ;
Househ, Mowafa ;
Al-Fuqaha, Ala .
JMIR FORMATIVE RESEARCH, 2022, 6 (05)
[5]   A Survey of COVID-19 Contact Tracing Apps [J].
Ahmed, Nadeem ;
Michelin, Regio A. ;
Xue, Wanli ;
Ruj, Sushmita ;
Malaney, Robert ;
Kanhere, Salil S. ;
Seneviratne, Aruna ;
Hu, Wen ;
Janicke, Helge ;
Jha, Sanjay K. .
IEEE ACCESS, 2020, 8 (08) :134577-134601
[6]   A Review of Mobile Applications Available in the App and Google Play Stores Used During the COVID-19 Outbreak [J].
Alanzi, Turki .
JOURNAL OF MULTIDISCIPLINARY HEALTHCARE, 2021, 14 :45-57
[7]  
Albawi S, 2017, I C ENG TECHNOL
[8]   Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19 [J].
Aleta, Alberto ;
Martin-Corral, David ;
Pastore y Piontti, Ana ;
Ajelli, Marco ;
Litvinova, Maria ;
Chinazzi, Matteo ;
Dean, Natalie E. ;
Halloran, M. Elizabeth ;
Longini, Ira M., Jr. ;
Merler, Stefano ;
Pentland, Alex ;
Vespignani, Alessandro ;
Moro, Esteban ;
Moreno, Yamir .
NATURE HUMAN BEHAVIOUR, 2020, 4 (09) :964-+
[9]   Population-scale longitudinal mapping of COVID-19 symptoms, behaviour and testing [J].
Allen, William E. ;
Altae-Tran, Han ;
Briggs, James ;
Jin, Xin ;
McGee, Glen ;
Shi, Andy ;
Raghavan, Rumya ;
Kamariza, Mireille ;
Nova, Nicole ;
Pereta, Albert ;
Danford, Chris ;
Kamel, Amine ;
Gothe, Patrik ;
Milam, Evrhet ;
Aurambault, Jean ;
Primke, Thorben ;
Li, Weijie ;
Inkenbrandt, Josh ;
Tuan Huynh ;
Chen, Evan ;
Lee, Christina ;
Croatto, Michael ;
Bentley, Helen ;
Lu, Wendy ;
Murray, Robert ;
Travassos, Mark ;
Coull, Brent A. ;
Openshaw, John ;
Greene, Casey S. ;
Shalem, Ophir ;
King, Gary ;
Probasco, Ryan ;
Cheng, David R. ;
Silbermann, Ben ;
Zhang, Feng ;
Lin, Xihong .
NATURE HUMAN BEHAVIOUR, 2020, 4 (09) :972-+
[10]  
Alsdurf H, 2020, Arxiv, DOI arXiv:2005.08502