Tensile and axial fatigue properties of AISI 316 L stainless steel fabricated by materials extrusion additive manufacturing

被引:13
|
作者
Suwanpreecha, Chanun [1 ]
Songkuea, Sukrit [1 ]
Linjee, Siwat [1 ]
Muengto, Suksan [1 ]
Bumrungpon, Mongkol [1 ]
Manonukul, Anchalee [1 ]
机构
[1] Natl Sci & Technol Dev Agcy NSTDA, Natl Met & Mat Technol Ctr MTEC, 114 Thailand Sci Pk, Klongluang 12120, Pathumthani, Thailand
来源
MATERIALS TODAY COMMUNICATIONS | 2023年 / 35卷
关键词
Stainless steel; MEX; MIM; Fatigue; BEHAVIOR;
D O I
10.1016/j.mtcomm.2023.105667
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Herein, the surface quality, physical, microstructural, tensile and axial fatigue properties of 316 L stainless steel fabricated by materials extrusion additive manufacturing (MEX) are investigated and compared to the wellestablished and similar fabrication process, metal injection moulding (MIM). The results reveal no discernible difference in microstructure, preferential orientation and grain size between MEX and MIM parts, except for voids between deposited paths found in MEX parts, and Si-O inclusions in MIM parts. MEX parts have slightly higher tensile properties than MIM parts due to the higher relative sintered density. However, the endurance limit of MEX parts is lower than MIM. This is attributed to differences in the surface characteristics, in which MEX parts have layer-by-layer characteristics, higher roughness and Al2O3 contamination from the separator. They sensitively act as crack origination sites and result in lower fatigue resistance when compared to MIM.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] TENSILE/COMPRESSIVE RESPONSE OF 316L STAINLESS STEEL FABRICATED BY ADDITIVE MANUFACTURING
    Barrionuevo, German Omar
    La Fe-Perdomo, Ivan
    Caceres-Brito, Esteban
    Navas-Pinto, Wilson
    INGENIUS-REVISTA DE CIENCIA Y TECNOLOGIA, 2024, (31): : 9 - 18
  • [2] Study on microstructure and tensile properties of 316L stainless steel fabricated by CMT wire and arc additive manufacturing
    Wang, C.
    Liu, T. G.
    Zhu, P.
    Lu, Y. H.
    Shoji, T.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 796
  • [3] Material extrusion additive manufacturing of AISI 316L pastes
    Hoffmann, Miguel
    Elwany, Alaa
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 108 : 238 - 251
  • [4] Fatigue Properties of 316L Stainless Steel
    Zhao, Xiao
    PROGRESS IN INDUSTRIAL AND CIVIL ENGINEERING, PTS. 1-5, 2012, 204-208 : 3786 - 3789
  • [5] The Fracture Behavior of 316L Stainless Steel with Defects Fabricated by SLM Additive Manufacturing
    Li, Hui
    Zhang, Jianhao
    CRYSTALS, 2021, 11 (12)
  • [6] Electrochemical insight into the passivity and corrosion of 316 L stainless steel fabricated through wire arc additive manufacturing
    Morshed-Behbahani, Khashayar
    Hadadzadeh, Amir
    Nasiri, Ali
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 693
  • [7] Laser Welding of AISI 316L Stainless Steel Produced by Additive Manufacturing or by Conventional Processes
    Mokhtari, Morgane
    Pommier, Pierrick
    Balcaen, Yannick
    Alexis, Joel
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2021, 5 (04):
  • [8] Dynamic properties of 316l stainless steel repaired using electron beam additive manufacturing
    Callanan, Jesse G.
    Black, Amber N.
    Lawrence, Samantha K.
    Jones, David R.
    Martinez, Daniel T.
    Martinez, Ramon M.
    Fensin, Saryu J.
    ACTA MATERIALIA, 2023, 246
  • [9] Predictive tools for the cooling rate-dependent microstructure evolution of AISI 316L stainless steel in additive manufacturing
    Abdali, Amirreza
    Nedjad, Syamak Hossein
    Zargari, Habib Hamed
    Saboori, Abdollah
    Yildiz, Mehmet
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 29 : 5530 - 5538
  • [10] Grain size prediction for stainless steel fabricated by material extrusion additive manufacturing
    You, Siyao
    Jiang, Dayue
    Yuan, Xiangyu
    Wang, Fuji
    Ning, Fuda
    MATERIALS & DESIGN, 2024, 241