Volcanic Early Warning Using Shannon Entropy: Multiple Cases of Study

被引:6
作者
Rey-Devesa, Pablo [1 ,2 ]
Benitez, Carmen [3 ]
Prudencio, Janire [1 ,2 ]
Gutierrez, Ligdamis [1 ,2 ]
Cortes-Moreno, Guillermo [1 ,2 ]
Titos, Manuel [3 ]
Koulakov, Ivan [4 ,5 ]
Zuccarello, Luciano [6 ]
Ibanez, Jesus M. [1 ,2 ,7 ]
机构
[1] Univ Granada, Sci Fac, Dept Theoret Phys & Cosmos, Granada, Spain
[2] Univ Granada, Andalusian Inst Geophys, Campus Cartuja, Granada, Spain
[3] Univ Granada, Dept Signal Theory Telemat & Commun, Informat & Telecommun Sch, Granada, Spain
[4] Trofimuk Inst Petr Geol & Geophys SB RAS, Novosibirsk, Russia
[5] Inst Earths Crust SB RAS, Irkutsk, Russia
[6] Ist Nazl Geofis & Vulcanol, Sez Pisa, Pisa, Italy
[7] Ist Nazl Geofis & Vulcanol, Sez Catania, Osservatorio Etneo, Catania, Italy
基金
俄罗斯科学基金会;
关键词
volcanic forecasting; seismic features; Shannon entropy; seismic signal processing; early warning; MOUNT ST-HELENS; FAILURE FORECAST METHOD; BEZYMIANNY VOLCANO; DECEPTION ISLAND; REDOUBT VOLCANO; ETNA VOLCANO; ERUPTION; TREMOR; PRECURSORS; SIGNALS;
D O I
10.1029/2023JB026684
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The search for pre-eruptive observables that can be used for short-term volcanic forecast remains a scientific challenge. Pre-eruptive patterns in seismic data are usually identified by analyzing seismic catalogs (e.g., the number and types of recorded seismic events), the evolution of seismic energy, or changes in the tensional state of the volcanic medium as a consequence of changes in the volume of the volcano. However, although successful volcanic predictions have been achieved, there is still no generally valid model suitable for a large range of eruptive scenarios. In this study, we evaluate the potential use of Shannon entropy as short-term volcanic eruption forecasting extracted from seismic signals at five well studied volcanoes (Etna, Mount St. Helens, Kilauea, Augustine, and Bezymianny). We identified temporal patterns that can be monitored as short-term eruptive precursors. We quantified the decay of Shannon entropy prior to eruptions, noting that changes appear between 4 days and 12 hr before. When Shannon entropy is combined with the temporal evolution of other features (i.e., energy, kurtosis, and the frequency index), we can elaborate physical models according to the occurring volcanic processes. Our results show that pre-eruptive variation in Shannon entropy is a confident short-term volcanic eruption monitoring tool.
引用
收藏
页数:19
相关论文
共 96 条
[11]   Continuous HMM-based seismic-event classification at Deception Island, Antarctica [J].
Benitez, M. C. ;
Ramirez, Javier ;
Segura, Jose C. ;
Ibanez, Jesus M. ;
Almendros, Javier ;
Garcia-Yeguas, Araceli ;
Cortes, Guillermo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (01) :138-146
[12]   Geochemical precursors to volcanic activity at Mount St. Helens, USA [J].
Berlo, K ;
Blundy, J ;
Turner, S ;
Cashman, K ;
Hawkesworth, C ;
Black, S .
SCIENCE, 2004, 306 (5699) :1167-1169
[13]   Eruptive processes leading to the most explosive lava fountain at Etna volcano: The 23 November 2013 episode [J].
Bonaccorso, A. ;
Calvari, S. ;
Linde, A. ;
Sacks, S. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (14) :4912-4919
[14]   Performance of the 'material Failure Forecast Method' in real-time situations: A Bayesian approach applied on effusive and explosive eruptions [J].
Boue, A. ;
Lesage, P. ;
Cortes, G. ;
Valette, B. ;
Reyes-Davila, G. ;
Arambula-Mendoza, R. ;
Budi-Santoso, A. .
JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 2016, 327 :622-633
[15]   Real-time eruption forecasting using the material Failure Forecast Method with a Bayesian approach [J].
Boue, A. ;
Lesage, P. ;
Cortes, G. ;
Valette, B. ;
Reyes-Davila, G. .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2015, 120 (04) :2143-2161
[16]   Towards forecasting volcanic eruptions using seismic noise [J].
Brenguier, Florent ;
Shapiro, Nikolai M. ;
Campillo, Michel ;
Ferrazzini, Valerie ;
Duputel, Zacharie ;
Coutant, Olivier ;
Nercessian, Alexandre .
NATURE GEOSCIENCE, 2008, 1 (02) :126-130
[17]  
Bueno A., 2021, IEEE T GEOSCI REMOTE, V60, P1, DOI [10.1109/TGRS.2021.3076012, DOI 10.1109/TGRS.2021.3076012]
[18]   Continuous Active Learning for Seismo-Volcanic Monitoring [J].
Bueno, Angel ;
Titos, Manuel ;
Benitez, Carmen ;
Ibanez, Jesus M. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[19]   Volcano-Seismic Transfer Learning and Uncertainty Quantification With Bayesian Neural Networks [J].
Bueno, Angel ;
Benitez, Carmen ;
De Angelis, Silvio ;
Diaz Moreno, Alejandro ;
Ibanez, Jesus M. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (02) :892-902
[20]  
Bueno A, 2018, EUR SIGNAL PR CONF, P2295, DOI 10.23919/EUSIPCO.2018.8553358