On Holomorphic Isometries into Blow-Ups of Cn

被引:0
|
作者
Loi, Andrea [1 ]
Mossa, Roberto [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat, Cagliari, Italy
关键词
Kahlermetrics; Kahler-Einstein metrics; Burns-Simanca metric; Eguchi-Hanson metric; relatives Kahler manifolds; Calabi's diastasis function; CONSTANT SCALAR CURVATURE; KAHLER-RICCI SOLITONS; SUBMANIFOLDS; MANIFOLDS;
D O I
10.1007/s00009-023-02437-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Kahler-Einstein manifolds which admits a holomorphic isometry into either the generalized Burns-Simanca manifold (C-n, gS) or the Eguchi-Hanson manifold ((C) over tilde (2), gEH). Moreover, we prove that ((C) over tilde (n), gS) and ((C) over tilde (2), gEH) are not relatives to any homogeneous bounded domain.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Holomorphic foliations desingularized by punctual blow-ups
    Cano, F
    Cerveau, D
    Scárdua, B
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 178 (03) : 235 - 243
  • [2] BOTERO BLOW-UPS
    REICHARDT, J
    ART INTERNATIONAL, 1983, 26 (03): : 18 - &
  • [3] Permissible Blow-Ups
    Cossart, Vincent
    Jannsen, Uwe
    Saito, Shuji
    DESINGULARIZATION: INVARIANTS AND STRATEGY: APPLICATION TO DIMENSION 2, 2020, 2270 : 37 - 48
  • [4] Blow-ups of canonical singularities
    Prokhorov, YG
    ALGEBRA, 2000, : 301 - 317
  • [5] Chern classes of blow-ups
    Aluffi, Paolo
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 148 : 227 - 242
  • [6] On Blow-Ups and Injectivity of Quivers
    Grilliette, Will
    Seacrest, Deborah E.
    Seacrest, Tyler
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (02):
  • [7] Ancient blow-ups - Response
    不详
    AMERICAN SCIENTIST, 2007, 95 (02) : 100 - 101
  • [8] Intersecting Legendrians and blow-ups
    Hassell, A
    Vasy, A
    MATHEMATICAL RESEARCH LETTERS, 2001, 8 (04) : 413 - 428
  • [9] The differential geometry of blow-ups
    D. V. Bykov
    Theoretical and Mathematical Physics, 2015, 185 : 1636 - 1648
  • [10] NOETHERIAN SYMBOLIC BLOW-UPS
    MORALES, M
    JOURNAL OF ALGEBRA, 1991, 140 (01) : 12 - 25