THE NONEXISTENCE OF EXPANSIVE POLYCYCLIC GROUP ACTIONS ON THE CIRCLE S1

被引:1
|
作者
Shi, Enhui [1 ]
Wang, Suhua [2 ]
Xie, Zhiwen [1 ]
Xu, Hui [3 ]
机构
[1] Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R China
[2] Suzhou Vocat Univ, Sch Math Sci, Suzhou 215104, Jiangsu, Peoples R China
[3] Univ Sci & Technol China, CAS Wu Wen Tsun Key Lab Math, Hefei 230026, Anhui, Peoples R China
关键词
Expansivity; polycyclic group; topological transitivity; circle; PEANO-CONTINUA; HOMEOMORPHISMS;
D O I
10.1090/proc/16400
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the circle S1 admits no expansive polycyclic group actions.
引用
收藏
页码:3049 / 3057
页数:9
相关论文
共 18 条
  • [1] The nonexistence of expansive polycyclic group actions on some Peano continua
    Xie, Zhiwen
    Wang, Suhua
    Liu, Heng
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2024, 26 (04)
  • [2] The nonexistence of expansive Zd actions on graphs
    Shi, EH
    Zhou, LZ
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (06) : 1509 - 1514
  • [3] The Nonexistence of Expansive ℤd Actions on Graphs
    En Hui Shi
    Li Zhen Zhou
    Acta Mathematica Sinica, 2005, 21 : 1509 - 1514
  • [4] The Nonexistence of Expansive Z~d Actions on Graphs
    En Hui SHI Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2005, 21 (06) : 1509 - 1514
  • [5] The nonexistence of expansive actions of groups with subexponential growth on Suslinian continua
    Liang, Bingbing
    Shi, Enhui
    Xie, Zhiwen
    Xu, Hui
    TOPOLOGY AND ITS APPLICATIONS, 2024, 343
  • [6] On Properties of Expansive Group Actions
    Barzanouni, Ali
    Divandar, Mahin Sadat
    Shah, Ekta
    ACTA MATHEMATICA VIETNAMICA, 2019, 44 (04) : 923 - 934
  • [7] Nilpotent endomorphisms of expansive group actions
    Salo, Ville
    Torma, Ilkka
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (03) : 393 - 452
  • [8] The Nonexistence of Sensitive Commutative Group Actions on Dendrites
    Shi, En Hui
    Sun, Bin Yong
    Zhou, Li Zhen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (10) : 1961 - 1968
  • [9] Flexibility of Group Actions on the Circle Preface
    Kim, Sang-hyun
    Koberda, Thomas
    Mj, Mahan
    FLEXIBILITY OF GROUP ACTIONS ON THE CIRCLE, 2019, 2231 : V - +
  • [10] Actions of the group of homeomorphisms of the circle on surfaces
    Militon, Emmanuel
    FUNDAMENTA MATHEMATICAE, 2016, 233 (02) : 143 - 172