TMS-EEG perturbation biomarkers for Alzheimer's disease patients classification

被引:16
作者
Tautan, Alexandra-Maria [1 ,2 ,3 ,6 ]
Casula, Elias P. P. [5 ,9 ]
Pellicciari, Maria Concetta [5 ]
Borghi, Ilaria [5 ]
Maiella, Michele [5 ]
Bonni, Sonia [5 ]
Minei, Marilena [5 ]
Assogna, Martina [5 ]
Palmisano, Annalisa [1 ,2 ,3 ,8 ]
Smeralda, Carmelo [7 ]
Romanella, Sara M. M. [1 ,2 ,3 ,7 ]
Ionescu, Bogdan [6 ]
Koch, Giacomo [4 ,5 ]
Santarnecchi, Emiliano [1 ,2 ,3 ]
机构
[1] Harvard Med Sch, Massachusetts Gen Hosp, Gordon Ctr Med Imaging, Dept Radiol,Precis Neurosci & Neuromodulat Program, Boston, MA 02115 USA
[2] Harvard Med Sch, Massachusetts Gen Hosp, Gordon Ctr Med Imaging, Dept Radiol,Network Control Lab, Boston, MA 02115 USA
[3] Harvard Med Sch, Berenson Allen Ctr Noninvas Brain Stimulat, Beth Israel Deaconess Med Ctr, Dept Neurol, Boston, MA 02115 USA
[4] Univ Ferrara, Dept Neurosci & Rehabil, Sect Human Physiol, I-44121 Ferrara, Italy
[5] Santa Lucia Fdn, I-00179 Rome, Italy
[6] Univ Politehn Bucuresti, Res Ctr CAMPUS, AI Multimedia Lab, Bucharest 061344, Romania
[7] Univ Siena, Dept Med, Surg Neurol & Clin Neurophysiol Sect, Siena Brain Invest & Neuromodulat Lab Si BIN Lab, Siena, Italy
[8] Univ Bari Aldo Moro, Dept Educ Psychol & Commun, Bari, Italy
[9] Univ Roma La Sapienza, Dept Psychol, Via Marsi 78, I-00185 Rome, Italy
关键词
TRANSCRANIAL MAGNETIC STIMULATION; MILD COGNITIVE IMPAIRMENT; MOTOR CORTICAL EXCITABILITY; FUNCTIONAL CONNECTIVITY; WORKING-MEMORY; PLASTICITY; CORTEX; DISCONNECTION; DIAGNOSIS; NETWORK;
D O I
10.1038/s41598-022-22978-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The combination of TMS and EEG has the potential to capture relevant features of Alzheimer's disease (AD) pathophysiology. We used a machine learning framework to explore time-domain features characterizing AD patients compared to age-matched healthy controls (HC). More than 150 time-domain features including some related to local and distributed evoked activity were extracted from TMS-EEG data and fed into a Random Forest (RF) classifier using a leave-one-subject out validation approach. The best classification accuracy, sensitivity, specificity and F1 score were of 92.95%, 96.15%, 87.94% and 92.03% respectively when using a balanced dataset of features computed globally across the brain. The feature importance and statistical analysis revealed that the maximum amplitude of the post-TMS signal, its Hjorth complexity and the amplitude of the TEP calculated in the window 45-80 ms after the TMS-pulse were the most relevant features differentiating AD patients from HC. TMS-EEG metrics can be used as a non-invasive tool to further understand the AD pathophysiology and possibly contribute to patients' classification as well as longitudinal disease tracking.
引用
收藏
页数:13
相关论文
共 74 条
  • [1] Directed Functional Networks in Alzheimer's Disease: Disruption of Global and Local Connectivity Measures
    Afshari, Saeedeh
    Jalili, Mahdi
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (04) : 949 - 955
  • [2] Predicting Alzheimer's disease severity by means of TMS-EEG coregistration
    Bagattini, Chiara
    Mutanen, Tuomas P.
    Fracassi, Claudia
    Manenti, Rosa
    Cotelli, Maria
    Ilmoniemi, Risto J.
    Miniussi, Carlo
    Bortoletto, Marta
    [J]. NEUROBIOLOGY OF AGING, 2019, 80 : 38 - 45
  • [3] Motivational mechanisms (BAS) and prefrontal cortical activation contribute to recognition memory for emotional words. rTMS effect on performance and EEG (alpha band) measures
    Balconi, Michela
    Cobelli, Chiara
    [J]. BRAIN AND LANGUAGE, 2014, 137 : 77 - 85
  • [4] Classification accuracy of TMS for the diagnosis of mild cognitive impairment
    Benussi, Alberto
    Grassi, Mario
    Palluzzi, Fernando
    Cantoni, Valentina
    Cotelli, Maria Sofia
    Premi, Enrico
    Di Lorenzo, Francesco
    Pellicciari, Maria Concetta
    Ranieri, Federico
    Musumeci, Gabriella
    Marra, Camillo
    Manganotti, Paolo
    Nardone, Raffaele
    Di Lazzaro, Vincenzo
    Koch, Giacomo
    Borroni, Barbara
    [J]. BRAIN STIMULATION, 2021, 14 (02) : 241 - 249
  • [5] Classification Accuracy of Transcranial Magnetic Stimulation for the Diagnosis of Neurodegenerative Dementias
    Benussi, Alberto
    Grassi, Mario
    Palluzzi, Fernando
    Koch, Giacomo
    Di Lazzaro, Vincenzo
    Nardone, Raffaele
    Cantoni, Valentina
    Dell'Era, Valentina
    Premi, Enrico
    Martorana, Alessandro
    di Lorenzo, Francesco
    Bonni, Sonia
    Ranieri, Federico
    Capone, Fioravante
    Musumeci, Gabriella
    Cotelli, Maria Sofia
    Padovani, Alessandro
    Borroni, Barbara
    [J]. ANNALS OF NEUROLOGY, 2020, 87 (03) : 394 - 404
  • [6] EEG spectral power abnormalities and their relationship with cognitive dysfunction in patients with Alzheimer's disease and type 2 diabetes
    Benwell, Christopher S. Y.
    Davila-Perez, Paula
    Fried, Peter J.
    Jones, Richard N.
    Travison, Thomas G.
    Santarnecchi, Emiliano
    Pascual-Leone, Alvaro
    Shafi, Mouhsin M.
    [J]. NEUROBIOLOGY OF AGING, 2020, 85 : 83 - 95
  • [7] Functional and effective brain connectivity for discrimination between Alzheimer's patients and healthy individuals: A study on resting state EEG rhythms
    Blinowska, Katarzyna J.
    Rakowski, Franciszek
    Kaminski, Maciej
    Fallani, Fabrizio De Vico
    Del Percio, Claudio
    Lizio, Roberta
    Babiloni, Claudio
    [J]. CLINICAL NEUROPHYSIOLOGY, 2017, 128 (04) : 667 - 680
  • [8] Effects of transcranial direct current stimulation on working memory in patients with Parkinson's disease
    Boggio, Paulo S.
    Ferrucci, Roberta
    Rigonatti, Sergio P.
    Covre, Priscila
    Nitsche, Michael
    Pascual-Leone, Alvaro
    Fregni, Felipe
    [J]. JOURNAL OF THE NEUROLOGICAL SCIENCES, 2006, 249 (01) : 31 - 38
  • [9] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [10] Transcranial magnetic stimulation-evoked EEG/cortical potentials in physiological and pathological aging
    Casarotto, Silvia
    Maatta, Sara
    Herukka, Sanna-Kaisa
    Pigorini, Andrea
    Napolitani, Martino
    Gosseries, Olivia
    Niskanen, Eini
    Kononen, Mervi
    Mervaala, Esa
    Rosanova, Mario
    Soininen, Hilkka
    Massimini, Marcello
    [J]. NEUROREPORT, 2011, 22 (12) : 592 - 597