A Technique for Rapid Selection of Blur Coefficients for Kernel Functions in Nonparametric Regression

被引:0
作者
Lapko, A. V. [1 ,2 ]
Lapko, V. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Inst Computat Modelling, Siberian Branch, Krasnoyarsk, Russia
[2] Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk, Russia
关键词
nonparametric regression; kernel probability density estimates; blur coefficients of kernel functions; rapid selection of blur coefficients; BANDWIDTH SELECTION; DENSITY;
D O I
10.1007/s11018-023-02120-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A technique for rapid selection of blur coefficients for kernel functions in nonparametric regression is proposed. This technique increases the computational efficiency of nonparametric regression when reconstructing univariate stochastic dependencies. This technique can significantly reduce the time input required for the synthesis of nonparametric regression compared to the conventional approach. The proposed method is based on a procedure for estimating optimal blur coefficients of kernel functions for nonparametric estimation of the joint probability density of a family of dependent random variables that obey normal distribution. The possibility of a rapid selection of blur coefficients of nonparametric estimates of two-dimensional probability density and dependent random variable regression is investigated. The influence of random variable distribution parameters and their estimation errors on the efficiency of the developed methodology is established. The advantage of the proposed technique over the conventional approach is shown to be particularly significant at small and large noise levels of the values of the reconstructed function.
引用
收藏
页码:557 / 563
页数:7
相关论文
共 17 条
  • [1] Bandwidth selection in nonparametric estimator of density derivative by smoothed cross-validation method
    Dobrovidov, A. V.
    Ruds'ko, I. M.
    [J]. AUTOMATION AND REMOTE CONTROL, 2010, 71 (02) : 209 - 224
  • [2] NON-PARAMETRIC ESTIMATION OF A MULTIVARIATE PROBABILITY DENSITY
    EPANECHN.VA
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (01): : 153 - &
  • [3] GNEDENKO BV, 1965, COURSE PROBABILITY T
  • [4] Hardle W., 1990, APPL NONPARAMETRIC R
  • [5] A brief survey of bandwidth selection for density estimation
    Jones, MC
    Marron, JS
    Sheather, SJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (433) : 401 - 407
  • [6] Optimization of the Kernel Probability Density Estimation of a Two-Dimensional Random Variable with Independent Components
    Lapko, A., V
    Lapko, V. A.
    Bakhtina, A., V
    [J]. MEASUREMENT TECHNIQUES, 2022, 64 (12) : 958 - 962
  • [7] Lapko A. V., 2022, INFORM SIST UPRAVL, V71, P90, DOI [10.22250/18142400_2022_71_1_90, DOI 10.22250/18142400_2022_71_1_90]
  • [8] Lapko A. V., 2022, OPTOELECTRON INSTRUM, V58, P93, DOI [10.15372/AUT20220211, DOI 10.15372/AUT20220211]
  • [9] [Лапко Александр Васильевич Lapko Aleksandr V.], 2022, [Измерительная техника, Izmeritel'naya Tekhnika, Izmeritel'naya tekhnika], P3, DOI 10.32446/0368-1025it.2022-2-3-7
  • [10] Nadaraya EA., 1965, P COMPUT CENT USSR A, V5, P56