Investigation of the Splashing Characteristics of Lead Slag in Side-Blown Bath Melting Process

被引:12
作者
Zou, Quan [1 ]
Hu, Jianhang [1 ,2 ,3 ]
Yang, Shiliang [1 ,2 ,3 ]
Wang, Hua [1 ,2 ,3 ]
Deng, Ge [4 ]
机构
[1] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Peoples R China
[2] Kunming Univ Sci & Technol, Minist Educ, Engn Res Ctr Met Energy Conservat & Emiss Reduct, Kunming 650093, Peoples R China
[3] Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cle, Kunming 650093, Peoples R China
[4] Yunnan Copper Co Ltd, Southwest Copper Branch, Kunming 650093, Peoples R China
基金
中国国家自然科学基金;
关键词
numerical simulation; slag splash; side-blown furnace; gas-liquid two-phase flow; BEHAVIOR; STEELMAKING; CONVERTER; FLOW;
D O I
10.3390/en16021007
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Aiming at the melt splashing behavior in the smelting process of an oxygen-enriched side-blowing furnace, the volume of fluid model and the realizable k-epsilon turbulence model are coupled and simulated. The effects of different operating parameters (injection velocity, immersion depth, liquid level) on splash height are explored, and the simulation results are verified by water model experiments. The results show that the bubbles with residual kinetic energy escape to the slag surface and cause slag splashing. The slag splashing height gradually increases with the increase in injection velocity, and the time-averaged splashing height reaches 1.01 m when the injection speed is 160 m/s. Increasing the immersion depth of the lance, and the slag splashing height gradually decreases. When the immersion depth is 0.12 m, the time-averaged splashing height is 0.85 m. Increasing the liquid level is beneficial to reduce the splash height, when the liquid level is 2.7 m, the splash height reduces to 0.77 m. With the increase in the liquid level, the slag splashing height gradually decreases, and the time-averaged splashing height is 0.77 m when the initial liquid level is 2.7 m.
引用
收藏
页数:18
相关论文
共 26 条
  • [11] A review of VOF methods for simulating bubble dynamics
    Mulbah, Christian
    Kang, Can
    Mao, Ning
    Zhang, Wei
    Shaikh, Ali Raza
    Teng, Shuang
    [J]. PROGRESS IN NUCLEAR ENERGY, 2022, 154
  • [12] Mixing Phenomena in a Bottom Blown Copper Smelter: A Water Model Study
    Shui, Lang
    Cui, Zhixiang
    Ma, Xiaodong
    Rhamdhani, M. Akbar
    Nguyen, Anh
    Zhao, Baojun
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2015, 46 (03): : 1218 - 1225
  • [13] Physical and Numerical Modeling of the Slag Splashing Process
    Sinelnikov, Viktor
    Szucki, Michal
    Merder, Tomasz
    Pieprzyca, Jacek
    Kalisz, Dorota
    [J]. MATERIALS, 2021, 14 (09)
  • [14] CFD modeling to study fluidized bed combustion and gasification
    Singh, Ravi Inder
    Brink, Anders
    Hupa, Mikko
    [J]. APPLIED THERMAL ENGINEERING, 2013, 52 (02) : 585 - 614
  • [15] Slag Splashing: simulation and analysis of the slags conditions
    Souza Santos, Inamara Amanda
    de Medeiros Santos, Vanessa Rodrigues
    Lima, Willian dos Reis
    da Silva, Aline Lima
    Maia, Breno Totti
    de Oliveira, Jose Roberto
    [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2019, 8 (06): : 6173 - 6176
  • [16] Fluid Dynamics in a Teniente Type Copper Converter Model with One and Two Tuyeres
    Valencia, Alvaro
    Rosales-Vera, Marco
    Orellana, Camilo
    [J]. ADVANCES IN MECHANICAL ENGINEERING, 2013,
  • [17] Dimensional Analysis of Average Diameter of Bubbles for Bottom Blown Oxygen Copper Furnace
    Wang, Dongxing
    Liu, Yan
    Zhang, Zimu
    Shao, Pin
    Zhang, Ting'an
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [18] Shape deformation and oscillation of particle-laden bubbles after pinch-off from a nozzle
    Wang, H.
    Brito-Parada, P. R.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2021, 412
  • [19] Numerical simulation of gas-liquid mixed top blowing to enhance momentum diffusion
    Wang, Yuhui
    Wang, Shibo
    Wei, Yonggang
    Zhang, Tifu
    Li, Shiwang
    [J]. APPLIED THERMAL ENGINEERING, 2020, 181
  • [20] [王泽 Wang Ze], 2002, [空气动力学学报, Acta Aerodynamica Sinica], V20, P198