Aspect-level sentiment classification via location enhanced aspect-merged graph convolutional networks

被引:7
|
作者
Jiang, Baoxing [1 ]
Xu, Guangtao [1 ]
Liu, Peiyu [1 ]
机构
[1] Shandong Normal Univ, Sch Informat Sci & Engn, Jinan 250300, Peoples R China
关键词
Aspect sentiment analysis; Merge aspect word; Graph convolutional networks; Location-aware transformation;
D O I
10.1007/s11227-022-05002-4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Aspect-level sentiment classification (ALSC) is a fine-grained sentiment analysis task that needs to predict the sentiment polarities of the given aspect terms in the sentence. Recently, emerging research has taken syntactic dependency tree as input and used graph convolutional neural network (GCN) to process ALSC tasks. However, existing GCN-based researches only consider the syntactic connections between words, ignoring the semantic relevance within aspectual entities. To address this deficiency, we propose a graph convolutional network based on Merger aspect entities and Location-aware transformation (MLGCN). Specifically, we use a specific token to replace the aspect entity, whether single-word or multi-word. The merged syntactic dependency graph is obtained through parsing for the sentence after merging aspect words. Then, we feed the sentence into an encoder and apply a novel location-aware function designed in this paper to the encoding result to enhance the model's attention to the opinion entities. Finally, the dependency graph and the processed sentence encoding are fed to the graph convolutional network for training. Experimental results on five benchmark datasets show that the model proposed in this paper has good performance and achieves satisfactory results, exceeding the vast majority of previous work.
引用
收藏
页码:9666 / 9691
页数:26
相关论文
共 50 条
  • [41] Image and Text Aspect-Level Sentiment Analysis Based on Attentional Mechanisms and Bimodal Fusion
    Ma, Jinsu
    Pan, Liwu
    INTERNATIONAL JOURNAL OF DECISION SUPPORT SYSTEM TECHNOLOGY, 2025, 17 (01)
  • [42] Hierarchical dual graph convolutional network for aspect-based sentiment analysis
    Zhou, Ting
    Shen, Ying
    Chen, Kang
    Cao, Qing
    KNOWLEDGE-BASED SYSTEMS, 2023, 276
  • [43] Graph Convolutional Network with Syntactic Dependency for Aspect-Based Sentiment Analysis
    Fan Zhang
    Wenbin Zheng
    Yujie Yang
    International Journal of Computational Intelligence Systems, 17
  • [44] Graph Convolutional Network with Syntactic Dependency for Aspect-Based Sentiment Analysis
    Zhang, Fan
    Zheng, Wenbin
    Yang, Yujie
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [45] Benchmarking Deep Learning Methods for Aspect Level Sentiment Classification
    Sharma, Tanu
    Kaur, Kamaldeep
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [46] Learning from word semantics to sentence syntax by graph convolutional networks for aspect-based sentiment analysis
    Dai, Anan
    Hu, Xiaohui
    Nie, Jianyun
    Chen, Jinpeng
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2022, 14 (01) : 17 - 26
  • [47] Learning from word semantics to sentence syntax by graph convolutional networks for aspect-based sentiment analysis
    Anan Dai
    Xiaohui Hu
    Jianyun Nie
    Jinpeng Chen
    International Journal of Data Science and Analytics, 2022, 14 : 17 - 26
  • [48] Aspect-based sentiment analysis by knowledge and attention integrated graph convolutional network
    Wan, Bingtao
    Wu, Peng
    Han, Pu
    Li, Gang
    APPLIED SOFT COMPUTING, 2025, 171
  • [49] A multi-task learning model with graph convolutional networks for aspect term extraction and polarity classification
    Meng Zhao
    Jing Yang
    Lianwei Qu
    Applied Intelligence, 2023, 53 : 6585 - 6603
  • [50] A multi-task learning model with graph convolutional networks for aspect term extraction and polarity classification
    Zhao, Meng
    Yang, Jing
    Qu, Lianwei
    APPLIED INTELLIGENCE, 2023, 53 (06) : 6585 - 6603