Liouville-type results for fully nonlinear subelliptic equations on the Heisenberg group

被引:0
作者
Shi, Wei [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Fully nonlinear equations; subelliptic equations; strong maximum principle; Heisenberg group; Liouville theorem; STRONG MAXIMUM PRINCIPLE; DEGENERATE ELLIPTIC-EQUATIONS; VISCOSITY SOLUTIONS; OPERATORS; PROPAGATION; THEOREMS;
D O I
10.1080/17476933.2023.2166497
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove new Liouville-type properties of fully nonlinear subelliptic equations modelled on the Heisenberg group. A key tool that can be of independent interest is a strong maximum principle for solutions of such differential equations.
引用
收藏
页码:898 / 912
页数:15
相关论文
共 33 条
[1]  
Armstrong SN, 2011, ANN SCUOLA NORM-SCI, V10, P711
[2]   Propagation of maxima and strong maximum principle for viscosity solutions of degenerate elliptic equations. II: Concave operators [J].
Bardi, M ;
Da Lio, F .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (03) :607-627
[3]   Propagation of maxima and strong maximum principle for viscosity solutions of degenerate elliptic equations. I: Convex operators [J].
Bardi, M ;
Da Lio, F .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (08) :991-1006
[4]  
Bardi M., 2020, ARXIV
[5]   Liouville properties and critical value of fully nonlinear elliptic operators [J].
Bardi, Martino ;
Cesaroni, Annalisa .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (07) :3775-3799
[6]   THE STRONG MAXIMUM PRINCIPLE AND THE HARNACK INEQUALITY FOR A CLASS OF HYPOELLIPTIC NON-HORMANDER OPERATORS [J].
Battaglia, Erika ;
Biagi, Stefano ;
Bonfiglioli, Andrea .
ANNALES DE L INSTITUT FOURIER, 2016, 66 (02) :589-631
[7]   On ∞-harmonic functions on the Heisenberg group [J].
Bieske, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (3-4) :727-761
[8]   Liouville theorems for semilinear equations on the Heisenberg group [J].
Birindelli, I ;
Dolcetta, IC ;
Cutri, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (03) :295-308
[9]   Nonlinear elliptic inequalities with gradient terms on the Heisenberg group [J].
Bordoni, Sara ;
Filippucci, Roberta ;
Pucci, Patrizia .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :262-279
[10]   Liouville type results and a maximum principle for non-linear differential operators on the Heisenberg group [J].
Brandolini, Luca ;
Magliaro, Marco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (02) :686-712