A quasilinear attraction-repulsion chemotaxis system with logistic source

被引:0
作者
Cai, Yuanyuan [1 ]
Li, Zhongping [1 ]
机构
[1] China West Normal Univ, Coll Math & Informat, Nanchong 637009, Peoples R China
关键词
Chemotaxis; Attraction-repulsion; Boundedness; Logistic source; KELLER-SEGEL SYSTEM; TIME BLOW-UP; NONRADIAL SOLUTIONS; GLOBAL EXISTENCE; BOUNDEDNESS; FINITE; MODEL;
D O I
10.1016/j.nonrwa.2022.103796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the quasilinear attraction-repulsion chemotaxis sys-tem with logistic source under Neumann boundary conditions in a bounded domain ohm subset of RN(N >= 1), where D, Phi, Psi is an element of C2[0, infinity) are nonnegative functions with D(s) >= (s + 1)p for s >= 0, Phi(s) <= chi sq, xi sr <= Psi (s) <= zeta sr for s > 1, and the smooth function f satisfies f (s) <= mu s(1 - sk) for s > 0, f (0) >= 0. Tian et al. (2016) proved that when q = max{r, k} and q -p >= 2N, if one of the following assumptions holds: (i) q = r = k, mu > (alpha chi-gamma xi)(1-N(q2-p))/(1+2(q-1) N(q-p) ); (ii) q = r > k, alpha chi-gamma xi< 0; (iii) q = k > r, mu > alpha chi(1- N2(p-q) )/(1 + 2(q-1) N(p-q) ), then the solution of the equations is globally bounded. The present work further shows that the same conclusion still holds for the critical cases: (a) q = r = k, mu = (alpha chi-gamma xi)(1-N(q2-p) )/(1 + 2(q-1) N(q-p) ); (b) q = r > k, alpha chi -gamma xi = 0 with q -p < 1Nmin{ 4(N+1) N+2 , N + 2}; (c) q = k > r, mu = alpha chi(1-N2(p-q))/(1 + 2(q-1) N(p-q) ).(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 36 条
[1]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[2]   Blow-up, Concentration Phenomenon and Global Existence for the Keller-Segel Model in High Dimension [J].
Calvez, Vincent ;
Corrias, Lucilla ;
Ebde, Mohamed Abderrahman .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) :561-584
[3]   Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation [J].
Cao, Xinru ;
Ishida, Sachiko .
NONLINEARITY, 2014, 27 (08) :1899-1913
[4]   Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with logistic source [J].
Cao, Xinru .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) :181-188
[5]   Finite-Time Blowup in a Supercritical Quasilinear Parabolic-Parabolic Keller-Segel System in Dimension 2 [J].
Cieslak, Tomasz ;
Stinner, Christian .
ACTA APPLICANDAE MATHEMATICAE, 2014, 129 (01) :135-146
[6]   Large time behavior of solutions to a quasilinear attraction-repulsion chemotaxis system with logistic source [J].
He, Xiao ;
Tian, Miaoqing ;
Zheng, Sining .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 54
[7]  
Herrero M.A., 1997, ANN SCUOLA NORM-SCI, V24, P633
[8]   Boundedness vs. blow-up in a chemotaxis system [J].
Horstmann, D ;
Winkler, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (01) :52-107
[9]   Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains [J].
Ishida, Sachiko ;
Seki, Kiyotaka ;
Yokota, Tomomi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) :2993-3010
[10]   BLOW-UP IN FINITE OR INFINITE TIME FOR QUASILINEAR DEGENERATE KELLER-SEGEL SYSTEMS OF PARABOLIC-PARABOLIC TYPE [J].
Ishida, Sachiko ;
Yokota, Tomomi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (10) :2569-2596