Robust stability control for nonlinear time varying delay fractional order practical systems and application in Glucose-Insulin system

被引:1
作者
Alikhani, Gholamreza [1 ]
Balochian, Saeed [1 ]
机构
[1] Islamic Azad Univ, Dept Elect Engn, Gonabad Branch, Gonabad, Khorasan E Raza, Iran
关键词
Diabetes Mellitus; insulin-glucose system; fractional order nonlinear systems; time-variant delay; BLOOD-GLUCOSE;
D O I
10.1080/10255842.2022.2145888
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Diabetes Mellitus is a long-term and prevalent disease that 10% of the world population suffer left-to-right markfrom. This study uses a state feedback controller to control blood glucose level in the delayed left-to-right markfractional order model of this disease. Thus, first, a proper state feedback controller for left-to-right markstabilizing the fractional order model with time-variant delays is presented. Then, stability and left-to-right markstabilization of the fractional order models in the fractional order insulin-glucose model with left-to-right marktime-variant delays is presented. The results show that the insulin-glucose system with the left-to-right markproposed controller is stabilized and the blood glucose concentration is controlled in a proper left-to-right marktime. Further studies might provide the opportunity for novel technologies in controlling and left-to-right marktreating diabetic patients.
引用
收藏
页码:1796 / 1805
页数:10
相关论文
共 42 条
[1]   Chaos control and solutions of fractional-order Malkus waterwheel model [J].
Akinlar, Mehmet Ali ;
Tchier, Fairouz ;
Inc, Mustafa .
CHAOS SOLITONS & FRACTALS, 2020, 135
[2]   Brain control of blood glucose levels: implications for the pathogenesis of type 2 diabetes [J].
Alonge, Kimberly M. ;
D'Alessio, David A. ;
Schwartz, Michael W. .
DIABETOLOGIA, 2021, 64 (01) :5-14
[3]  
Batiha I., 2021, Int. J. Adv. Soft Comput. Appl., V13, P1
[4]   Automated blood glucose control in type 1 diabetes: A review of progress and challenges [J].
Bertachi, Arthur ;
Ramkissoon, Charrise M. ;
Bondia, Jorge ;
Vehi, Josep .
ENDOCRINOLOGIA DIABETES Y NUTRICION, 2018, 65 (03) :172-181
[5]   Stability and Stabilization of a Class of Nonlinear Fractional-Order Systems With Caputo Derivative [J].
Chen, Liping ;
Chai, Yi ;
Wu, Ranchao ;
Yang, Jing .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (09) :602-606
[6]   Chaos and coexisting attractors in glucose-insulin regulatory system with incommensurate fractional-order derivatives [J].
Debbouche, Nadjette ;
Almatroud, A. Othman ;
Ouannas, Adel ;
Batiha, Iqbal M. .
CHAOS SOLITONS & FRACTALS, 2021, 143
[7]  
Dubey V., 2021, Turk J Comput Math Educ (TURCOMAT), V12, P2948
[8]   Hopf bifurcation, chaos control and synchronization of a chaotic fractional-order system with chaos entanglement function [J].
Eshaghi, Shiva ;
Ghaziani, Reza Khoshsiar ;
Ansari, Alireza .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 172 :321-340
[9]  
Franco R, 2021, IEEE T CONTR SYST T, V29, P2704, DOI 10.1109/TCST.2020.3046420
[10]   Robust stability analysis of interval fractional-order plants by fractional-order controllers: an approach to reduce additional calculation [J].
Ghorbani, Majid .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2021, 50 (01) :1-25