Deformations and rigidity in varieties of Lie algebras

被引:0
|
作者
Barrionuevo, Josefina [1 ]
Tirao, Paulo [1 ,2 ]
Sulca, Diego [1 ]
机构
[1] Univ Nacl Cordoba, CONICET, CIEM FaMAF, RA-5000 Cordoba, Argentina
[2] Guangdong Technion Israel Inst Technol, 241 Daxue Rd, Shantou, Guandong Prov, Peoples R China
关键词
Lie algebras varieties; Deformations; Rigidity; COHOMOLOGY;
D O I
10.1016/j.jpaa.2022.107217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel construction of linear deformations for Lie algebras and use it to prove the non-rigidity of several classes of Lie algebras in different varieties. In particular, we address the problem of k-rigidity for k-step nilpotent Lie algebras and k-solvable Lie algebras.We show that Lie algebras with an abelian factor are not rigid, even for the case of a 1-dimensional abelian factor. This holds in the more restricted case of k-rigidity. We also prove that the k-step free nilpotent Lie algebras are not (k + 1)-rigid, but however they are k-rigid.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Cohomology and Deformations of Relative Rota-Baxter Operators on Lie-Yamaguti Algebras
    Zhao, Jia
    Qiao, Yu
    MATHEMATICS, 2024, 12 (01)
  • [42] Arrangements of Hyperplanes, Lower Central Series, Chen Lie Algebras and Resonance Varieties
    Jambu, Michel
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ALGEBRA 2010: ADVANCES IN ALGEBRAIC STRUCTURES, 2012, : 332 - 345
  • [43] The full cohomology, abelian extensions and formal deformations of Hom-pre-Lie algebras
    Liu, Shanshan
    Makhlouf, Abdenacer
    Song, Lina
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (08): : 2748 - 2773
  • [44] Deformations and Homotopy of Rota-Baxter Operators and O-Operators on Lie Algebras
    Tang, Rong
    Bai, Chengming
    Guo, Li
    Sheng, Yunhe
    PHYSICS OF PARTICLES AND NUCLEI, 2020, 51 (04) : 393 - 398
  • [45] On deformations of A∞-algebras
    Sharapov, A. A.
    Skvortsov, E. D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (47)
  • [46] Support varieties of semisimple-character representations for Cartan type Lie algebras
    Yao, Yufeng
    Shu, Bin
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (04) : 775 - 788
  • [47] Solvable Leibniz algebras with quasi-filiform Lie algebras of maximum length nilradicals
    Muratova, Kh. A.
    Ladra, M.
    Omirov, B. A.
    Sattarov, A. M.
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (08) : 3525 - 3542
  • [48] EXTENSIONS OF (SUPER) LIE ALGEBRAS
    Fialowski, Alice
    Penkava, Michael
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (05) : 709 - 737
  • [49] RIGID LIE ALGEBRAS AND ALGEBRAICITY
    Remm, Elisabeth
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 65 (04): : 491 - 510
  • [50] Enveloping algebras of color hom-Lie algebras
    Armakan, Abdoreza
    Silvestrov, Sergei
    Farhangdoost, Mohammad Reza
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) : 316 - 339