Deformations and rigidity in varieties of Lie algebras

被引:0
|
作者
Barrionuevo, Josefina [1 ]
Tirao, Paulo [1 ,2 ]
Sulca, Diego [1 ]
机构
[1] Univ Nacl Cordoba, CONICET, CIEM FaMAF, RA-5000 Cordoba, Argentina
[2] Guangdong Technion Israel Inst Technol, 241 Daxue Rd, Shantou, Guandong Prov, Peoples R China
关键词
Lie algebras varieties; Deformations; Rigidity; COHOMOLOGY;
D O I
10.1016/j.jpaa.2022.107217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a novel construction of linear deformations for Lie algebras and use it to prove the non-rigidity of several classes of Lie algebras in different varieties. In particular, we address the problem of k-rigidity for k-step nilpotent Lie algebras and k-solvable Lie algebras.We show that Lie algebras with an abelian factor are not rigid, even for the case of a 1-dimensional abelian factor. This holds in the more restricted case of k-rigidity. We also prove that the k-step free nilpotent Lie algebras are not (k + 1)-rigid, but however they are k-rigid.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [11] Deformations of filiform Lie algebras and superalgebras
    Khakimdjanov, Yu.
    Navarro, R. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (09) : 1156 - 1169
  • [12] Rigidity of Some Classes of Lie Algebras in Connection to Leibniz Algebras
    Abdulkareem, Abdulafeez O.
    Rakhimov, Isamiddin S.
    Husain, Sharifah K. Said
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 702 - 707
  • [13] Deformations and generalized derivations of Hom-Lie conformal algebras
    Zhao, Jun
    Yuan, Lamei
    Chen, Liangyun
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (05) : 797 - 812
  • [14] Deformations and generalized derivations of Hom-Lie conformal algebras
    Jun Zhao
    Lamei Yuan
    Liangyun Chen
    ScienceChina(Mathematics), 2018, 61 (05) : 797 - 812
  • [15] Deformations and generalized derivations of Hom-Lie conformal algebras
    Jun Zhao
    Lamei Yuan
    Liangyun Chen
    Science China Mathematics, 2018, 61 : 797 - 812
  • [16] Deformations of current Lie algebras. I. Small algebras in characteristic 2
    Grishkov, Alexander
    Zusmanovich, Pasha
    JOURNAL OF ALGEBRA, 2017, 473 : 513 - 544
  • [17] About Leibniz cohomology and deformations of Lie algebras
    Fialowski, A.
    Magnin, L.
    Mandal, A.
    JOURNAL OF ALGEBRA, 2013, 383 : 63 - 77
  • [18] Infinitesimal deformations of restricted simple Lie algebras I
    Viviani, Filippo
    JOURNAL OF ALGEBRA, 2008, 320 (12) : 4102 - 4131
  • [19] Formal deformations, contractions and moduli spaces of lie algebras
    Fialowski, Alice
    Penkava, Michael
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (02) : 561 - 582
  • [20] Deformations, cohomologies and integrations of relative difference Lie algebras
    Jiang, Jun
    Sheng, Yunhe
    JOURNAL OF ALGEBRA, 2023, 614 : 535 - 563