Local discontinuous Galerkin method for multi-term variable-order time fractional diffusion equation

被引:6
作者
Wei, Leilei [1 ]
Wang, Huanhuan [1 ]
机构
[1] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable-order fractional derivatives; Local discontinuous Galerkin method; Stability; Error estimates; HIGH SPATIAL ACCURACY; FINITE-ELEMENT-METHOD; DIFFERENCE SCHEME; NUMERICAL-METHODS; SPECTRAL METHOD; CONVERGENCE; STABILITY; MODELS; APPROXIMATION;
D O I
10.1016/j.matcom.2022.07.017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an effective numerical method for multi-term variable-order time fractional diffusion equations with the variable-order fractional derivative. The local discontinuous Galerkin method and the finite difference method are used in the spatial and temporal directions, respectively. We prove that the scheme is unconditional stable and convergent with O(h(s+1 )+( delta t)(2-r)), where r = max{epsilon(t)}. s, h, delta t are the degree of piecewise polynomials, the space step sizes, and the time step sizes, respectively. Some numerical experiments are used to illustrate the effectiveness and applicability of the scheme.(C) 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:685 / 698
页数:14
相关论文
共 41 条
[1]   A compact finite difference scheme for variable order subdiffusion equation [J].
Cao, Jianxiong ;
Qiu, Yanan ;
Song, Guojie .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 :140-149
[2]   NUMERICAL SCHEMES WITH HIGH SPATIAL ACCURACY FOR A VARIABLE-ORDER ANOMALOUS SUBDIFFUSION EQUATION [J].
Chen, Chang-Ming ;
Liu, F. ;
Anh, V. ;
Turner, I. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04) :1740-1760
[3]   A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile immobile advection-diffusion equations [J].
Chen, Chuanjun ;
Liu, Huan ;
Zheng, Xiangcheng ;
Wang, Hong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (09) :2771-2783
[4]   Combined application of blockchain technology in fractional calculus model of supply chain financial system [J].
Chen, Ting ;
Wang, Derong .
CHAOS SOLITONS & FRACTALS, 2020, 131
[5]   A fractional porous medium equation [J].
de Pablo, Arturo ;
Quiros, Fernando ;
Rodriguez, Ana ;
Luis Vazquez, Juan .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1378-1409
[6]   A meshless method in reproducing kernel space for solving variable-order time fractional advection-diffusion equations on arbitrary domain [J].
Du, Hong ;
Chen, Zhong ;
Yang, Tiejun .
APPLIED MATHEMATICS LETTERS, 2021, 116
[7]   Application of fractional calculus methods to viscoelastic behaviours of solid propellants [J].
Fang, Changqing ;
Shen, Xiaoyin ;
He, Kuai ;
Yin, Chao ;
Li, Shasha ;
Chen, Xiaolong ;
Sun, Huiyu .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2172)
[8]   Variable-order fractional calculus: A change of perspective [J].
Garrappa, Roberto ;
Giusti, Andrea ;
Mainardi, Francesco .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
[9]   Fully discrete local discontinuous Galerkin methods for some time-fractional fourth-order problems [J].
Guo, Li ;
Wang, Zhibo ;
Vong, Seakweng .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2016, 93 (10) :1665-1682
[10]   On an accurate discretization of a variable-order fractional reaction-diffusion equation [J].
Hajipour, Mojtaba ;
Jajarmi, Amin ;
Baleanu, Dumitru ;
Sun, HongGuang .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 69 :119-133