Fractal Fractional Derivative Models for Simulating Chemical Degradation in a Bioreactor

被引:6
作者
Akgul, Ali [1 ,2 ,3 ]
Conejero, J. Alberto [4 ]
机构
[1] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkiye
[2] Lebanese Amer Univ, Dept Comp Sci & Math, POB 13-5053, Beirut, Lebanon
[3] Near East Univ, Math Res Ctr, Dept Math, Near East Blvd, TR-99138 Mersin, Turkiye
[4] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
关键词
bioreactor model; numerical methods; fractal-fractional derivatives; numerical simulations; NUMERICAL-SOLUTIONS; EQUATIONS; BIODEGRADATION; ORDER;
D O I
10.3390/axioms13030151
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A three-differential-equation mathematical model is presented for the degradation of phenol and p-cresol combination in a bioreactor that is continually agitated. The stability analysis of the model's equilibrium points, as established by the study, is covered. Additionally, we used three alternative kernels to analyze the model with the fractal-fractional derivatives, and we looked into the effects of the fractal size and fractional order. We have developed highly efficient numerical techniques for the concentration of biomass, phenol, and p-cresol. Lastly, numerical simulations are used to illustrate the accuracy of the suggested method.
引用
收藏
页数:16
相关论文
共 34 条
[1]   Approximate analytical solutions for the blood ethanol concentration system and predator-prey equations by using variational iteration method [J].
Adel, M. ;
Khader, M. M. ;
Ahmad, Hijaz ;
Assiri, T. A. .
AIMS MATHEMATICS, 2023, 8 (08) :19083-19096
[2]   A meshless method for numerical solutions of linear and nonlinear time-fractional Black-Scholes models [J].
Ahmad, Hijaz ;
Khan, Muuhammad Nawaz ;
Ahmad, Imtiaz ;
Omri, Mohamed ;
Alotaibi, Maged F. .
AIMS MATHEMATICS, 2023, 8 (08) :19677-19698
[3]   A Caputo discrete fractional-order thermostat model with one and two sensors fractional boundary conditions depending on positive parameters by using the Lipschitz-type inequality [J].
Alzabut, Jehad ;
Selvam, A. George Maria ;
Dhineshbabu, Raghupathi ;
Tyagi, Swati ;
Ghaderi, Mehran ;
Rezapour, Shahram .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
[5]   A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative [J].
Baleanu, Dumitru ;
Jajarmi, Amin ;
Mohammadi, Hakimeh ;
Rezapour, Shahram .
CHAOS SOLITONS & FRACTALS, 2020, 134
[6]   A new Jacobi spectral collocation method for solving 1+1 fractional Schrodinger equations and fractional coupled Schrodinger systems [J].
Bhrawy, A. H. ;
Doha, E. H. ;
Ezz-Eldien, S. S. ;
Van Gorder, Robert A. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (12)
[7]  
Changpin Li, 2012, 2012 IEEE/ASME 8th International Conference on Mechatronic and Embedded Systems and Applications (MESA), P314, DOI 10.1109/MESA.2012.6275581
[8]  
Chen YM, 2012, CMES-COMP MODEL ENG, V83, P639
[9]   Mechanics with variable-order differential operators [J].
Coimbra, CFM .
ANNALEN DER PHYSIK, 2003, 12 (11-12) :692-703
[10]   Global Stability Analysis of a Bioreactor Model for Phenol and Cresol Mixture Degradation [J].
Dimitrova, Neli ;
Zlateva, Plamena .
PROCESSES, 2021, 9 (01) :1-19