SAR ship detection based on improved YOLOv5 and BiFPN

被引:2
|
作者
Yu, Chushi [1 ]
Shin, Yoan [1 ]
机构
[1] Soongsil Univ, Sch Elect Engn, Seoul, South Korea
来源
ICT EXPRESS | 2024年 / 10卷 / 01期
关键词
Synthetic aperture radar; Ship detection; YOLOv5; Coordinate attention block; Bidirectional feature pyramid network;
D O I
10.1016/j.icte.2023.03.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Synthetic aperture radar (SAR) is an advanced microwave sensor widely used in ocean monitoring, whose operation is not affected by light and weather. Ship targets in SAR images contain characteristically unclear contour information, a complex background, and display strong scattering. Ship detection algorithms based on convolutional neural networks achieved good results, albeit with many missed and false detections. To address this issue, we propose an improved scheme based on YOLOv5, that combines coordinate attention blocks and uses a bidirectional feature pyramid network for better feature fusion. Experimental results obtained with SAR images datasets demonstrate the effectiveness and applicability of the proposed model when applied for ship detection in SAR images. Compared to the original YOLOv5, the detection accuracy of the proposed method was increased from 81.28% to 88.27%, and the mean average precision was increased from 92.57% to 95.02%, which showed significant performance improvement by the proposed method in terms of detection accuracy and speed. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of The Korean Institute of Communications and Information Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:28 / 33
页数:6
相关论文
共 50 条
  • [21] Traffic Sign Detection Based on Improved YOLOv5
    Zhou, Hua-Ping
    Xu, Chen-Chen
    Sun, Ke-Lei
    Journal of Computers (Taiwan), 2023, 34 (03) : 63 - 73
  • [22] Outdoor Garbage Detection Based on Improved YOLOv5
    Chen Shengxuan
    Wang Aimin
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (22)
  • [23] Helmet detection method based on improved YOLOv5
    Hou G.
    Chen Q.
    Yang Z.
    Zhang Y.
    Zhang D.
    Li H.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (02): : 329 - 342
  • [24] Cow Detection Model Based on Improved YOLOv5
    Wang, Wei
    Xie, Mujun
    Jiang, Changhong
    Zheng, Zhong
    Bian, Heyu
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1704 - 1708
  • [25] Fish detection method based on improved YOLOv5
    Lei Li
    Guosheng Shi
    Tao Jiang
    Aquaculture International, 2023, 31 : 2513 - 2530
  • [26] Ship Detection Algorithm Based on YOLOv5 Network Improved with Lightweight Convolution and Attention Mechanism
    Wang, Langyu
    Zhang, Yan
    Lin, Yahong
    Yan, Shuai
    Xu, Yuanyuan
    Sun, Bo
    ALGORITHMS, 2023, 16 (12)
  • [27] An Improved UAV Detection Method Based on YOLOv5
    Liu, Xinfeng
    Chen, Mengya
    Li, Chenglong
    Tian, Jie
    Zhou, Hao
    Ullah, Inam
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 739 - 750
  • [28] Driver Attention Detection Based on Improved YOLOv5
    Wang, Zhongzhou
    Yao, Keming
    Guo, Fuao
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [29] Hand target detection based on improved YOLOv5
    Xu Z.
    Meng J.
    Fang J.
    International Journal of Wireless and Mobile Computing, 2023, 25 (04) : 353 - 361
  • [30] Ship target detection method for synthetic aperture radar images based on improved YOLOv5
    He Z.
    Li M.
    Gou Y.
    Yang A.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (12): : 3743 - 3753