Proof of a conjecture on edge coloring of the Kneser graph K(t, 2)

被引:0
作者
Panneerselvam, L. [1 ]
Ganesamurthy, S. [1 ]
Muthusamy, A. [1 ]
Srimathi, R. [2 ]
机构
[1] Periyar Univ, Dept Math, Salem 636011, India
[2] Dhanalakshmi Srinivasan Coll Arts & Sci Women Aut, Dept Math, Perambalur 621212, India
关键词
edge coloring; Kneser graph; regular graph; CHROMATIC NUMBER;
D O I
10.47443/dml.2023.079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, it is proved that the Kneser graph K(t, 2) is Class 1 for t equivalent to 1 (mod 4) >= 9. This result proves the conjecture posed in [C. M. H. de Figueiredo, C. S. R. Patrao, D. Sasaki, M. Valencia-Pabon, J. Combin. Optim. 44 (2022) 119-135].
引用
收藏
页码:217 / 221
页数:5
相关论文
共 17 条
[1]   Achromatic numbers of Kneser graphs [J].
Araujo-Pardo, Gabriela ;
Carlos Diaz-Patino, Juan ;
Rubio-Montiel, Christian .
ARS MATHEMATICA CONTEMPORANEA, 2021, 21 (01)
[2]   b-coloring of Kneser graphs [J].
Balakrishnan, R. ;
Kavaskar, T. .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (1-2) :9-14
[3]  
Balakrishnan R., 2012, UNIVERSITEX
[4]  
BARANY I, 1978, J COMB THEORY A, V25, P325
[5]   Graph Edge Coloring: A Survey [J].
Cao, Yan ;
Chen, Guantao ;
Jing, Guangming ;
Stiebitz, Michael ;
Toft, Bjarne .
GRAPHS AND COMBINATORICS, 2019, 35 (01) :33-66
[6]   EVERY GENERALIZED PETERSEN GRAPH HAS A TAIT COLORING [J].
CASTAGNA, F ;
PRINS, G .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 40 (01) :53-&
[7]   On total and edge coloring some Kneser graphs [J].
de Figueiredo, C. M. H. ;
Patrao, C. S. R. ;
Sasaki, D. ;
Valencia-Pabon, M. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) :119-135
[8]  
Furmanczyk H., 2009, Discuss. Math. Graph Theory, V29, P119
[9]   A new short proof of Kneser's conjecture [J].
Greene, JE .
AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (10) :918-920
[10]  
Gupta R. P., 1966, Notices Amer. Math. Soc., V13, P449