CT-based peritumoral radiomics nomogram on prediction of response and survival to induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma

被引:4
作者
Zeng, Fanyuan [1 ]
Ye, Zhuomiao [1 ,2 ]
Zhou, Qin [1 ]
机构
[1] Cent South Univ, Xiangya Hosp, Dept Oncol, Changsha 410008, Hunan, Peoples R China
[2] Chongqing Univ, Translat Med Res Ctr TMRC, Sch Med, Chongqing 400044, Peoples R China
关键词
Nasopharyngeal carcinoma; Immunotherapy; Chemotherapy; Radiomics; Nomogram; DISEASE-FREE SURVIVAL; CONCURRENT CHEMORADIOTHERAPY; RADIATION-THERAPY; SOLID TUMORS; PHASE-II; MRI; MULTICENTER; TRIALS;
D O I
10.1007/s00432-023-05590-5
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PurposeThe study aims to harness the value of radiomics models combining intratumoral and peritumoral features obtained from pretreatment CT to predict treatment response as well as the survival of LA-NPC(locoregionally advanced nasopharyngeal carcinoma) patients receiving multiple types of induction chemotherapies, including immunotherapy and targeted therapy.Methods276 LA-NPC patients (221 in the training and 55 in the testing cohort) were retrospectively enrolled. Various statistical analyses and feature selection techniques were applied to identify the most relevant radiomics features. Multiple machine learning models were trained and compared to build signatures for the intratumoral and each peritumoral region, along with a clinical signature. The performance of each model was evaluated using different metrics. Subsequently, a nomogram model was constructed by combining the best-performing radiomics and clinical models.ResultsIn the testing cohort, the nomogram model exhibited an AUC of 0.816, outperforming the other models. The nomogram model's calibration curve showed good agreement between predicted and observed outcomes in both the training and testing sets. When predicting survival, the model's concordance index (C-index) was 0.888 in the training cohort and 0.899 in the testing cohort, indicating its robust predictive ability.ConclusionIn conclusion, the combined nomogram model, incorporating radiomics and clinical features, outperformed other models in predicting treatment response and survival outcomes for LA-NPC patients receiving induction chemotherapies. These findings highlight the potential clinical utility of the model, suggesting its value in individualized treatment planning and decision-making.
引用
收藏
页数:14
相关论文
共 45 条
[1]   Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis [J].
Blanchard, Pierre ;
Lee, Anne ;
Marguet, Sophie ;
Leclercq, Julie ;
Ng, Wai Tong ;
Ma, Jun ;
Chan, Anthony T. C. ;
Huang, Pei-Yu ;
Benhamou, Ellen ;
Zhu, Guopei ;
Chua, Daniel T. T. ;
Chen, Yong ;
Mai, Hai-Qiang ;
Kwong, Dora L. W. ;
Cheah, Shie Lee ;
Moon, James ;
Tung, Yuk ;
Chi, Kwan-Hwa ;
Fountzilas, George ;
Zhang, Li ;
Hui, Edwin Pun ;
Lu, Tai-Xiang ;
Bourhis, Jean ;
Pignon, Jean Pierre .
LANCET ONCOLOGY, 2015, 16 (06) :645-655
[2]   Prognostic generalization of multi-level CT-dose fusion dosiomics from primary tumor and lymph node in nasopharyngeal carcinoma [J].
Cai, Chunya ;
Lv, Wenbing ;
Chi, Feng ;
Zhang, Bailin ;
Zhu, Lin ;
Yang, Geng ;
Zhao, Shiwu ;
Zhu, Yuanhu ;
Han, Xu ;
Dai, Zhenhui ;
Wang, Xuetao ;
Lu, Lijun .
MEDICAL PHYSICS, 2023, 50 (02) :922-934
[3]   Multicenter, phase II study of cetuximab in combination with carboplatin in patients with recurrent or metastatic nasopharyngeal carcinoma [J].
Chan, ATC ;
Hsu, MM ;
Goh, BC ;
Hui, EP ;
Liu, TW ;
Millward, MJ ;
Hong, RL ;
Whang-Peng, J ;
Ma, BBY ;
To, KF ;
Mueser, M ;
Amellal, N ;
Lin, X ;
Chang, AY .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (15) :3568-3576
[4]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[5]   Unraveling tumour microenvironment heterogeneity in nasopharyngeal carcinoma identifies biologically distinct immune subtypes predicting prognosis and immunotherapy responses [J].
Chen, Yu-Pei ;
Lv, Jia-Wei ;
Mao, Yan-Ping ;
Li, Xiao-Min ;
Li, Jun-Yan ;
Wang, Ya-Qin ;
Xu, Cheng ;
Li, Ying-Qin ;
He, Qing-Mei ;
Yang, Xiao-Jing ;
Lei, Yuan ;
Shen, Jia-Yi ;
Tang, Ling-Long ;
Chen, Lei ;
Zhou, Guan-Qun ;
Li, Wen-Fei ;
Du, Xiao-Jing ;
Guo, Rui ;
Liu, Xu ;
Zhang, Yuan ;
Zeng, Jing ;
Yun, Jing-Ping ;
Sun, Ying ;
Liu, Na ;
Ma, Jun .
MOLECULAR CANCER, 2021, 20 (01)
[6]   Nasopharyngeal carcinoma [J].
Chen, Yu-Pei ;
Chan, Anthony T. C. ;
Quynh-Thu Le ;
Blanchard, Pierre ;
Sun, Ying ;
Ma, Jun .
LANCET, 2019, 394 (10192) :64-80
[7]   Nasopharyngeal carcinoma [J].
Chua, Melvin L. K. ;
Wee, Joseph T. S. ;
Hui, Edwin P. ;
Chan, Anthony T. C. .
LANCET, 2016, 387 (10022) :1012-1024
[8]   Nasopharyngeal Carcinoma - A Retrospective Review of Demographics, Treatment and Patient Outcome in a Single Centre [J].
Colaco, R. J. ;
Betts, G. ;
Donne, A. ;
Swindell, R. ;
Yap, B. K. ;
Sykes, A. J. ;
Slevin, N. J. ;
Homer, J. J. ;
Lee, L. W. .
CLINICAL ONCOLOGY, 2013, 25 (03) :171-177
[9]   Multi-parametric MRI-based peritumoral radiomics on prediction of lymph-vascular space invasion in early-stage cervical cancer [J].
Cui, Linpeng ;
Yu, Tao ;
Kan, Yangyang ;
Dong, Yue ;
Luo, Yahong ;
Jiang, Xiran .
DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2022, 28 (04) :312-321
[10]   3D segmentation of nasopharyngeal carcinoma from CT images using cascade deep learning [J].
Daoud, Bilel ;
Morooka, Ken'ichi ;
Kurazume, Ryo ;
Leila, Farhat ;
Mnejja, Wafa ;
Daoud, Jamel .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 77