Adaptive Image Compression via Optimal Mesh Refinement

被引:0
作者
Feischl, Michael [1 ]
Hackl, Hubert [1 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Vienna, Austria
关键词
Adaptive Mesh Refinement; Optimality; Image Compression; JPEG; CONVERGENCE; FEEDBACK;
D O I
10.1515/cmam-2023-0097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The JPEG algorithm is a defacto standard for image compression. We investigate whether adaptive mesh refinement can be used to optimize the compression ratio and propose a new adaptive image compression algorithm. We prove that it produces a quasi-optimal subdivision grid for a given error norm with high probability. This subdivision can be stored with very little overhead and thus leads to an efficient compression algorithm. We demonstrate experimentally, that the new algorithm can achieve better compression ratios than standard JPEG compression with no visible loss of quality on many images. The mathematical core of this work shows that Binev's optimal tree approximation algorithm is applicable to image compression with high probability, when we assume small additive Gaussian noise on the pixels of the image.
引用
收藏
页码:317 / 335
页数:19
相关论文
共 26 条
[1]  
Annamalai A., 2009, 2009 6th IEEE Consumer Communications and Networking Conference, P1
[2]  
[Anonymous], 2000, Pure and Applied Mathematics (New York)
[3]  
BABUSKA I, 1984, NUMER MATH, V44, P75, DOI 10.1007/BF01389757
[4]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[5]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[6]   Fast computation in adaptive tree approximation [J].
Binev, P ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :193-217
[7]   TREE APPROXIMATION FOR hp-ADAPTIVITY [J].
Binev, Peter .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (06) :3346-3357
[8]   Axioms of adaptivity [J].
Carstensen, C. ;
Feischl, M. ;
Page, M. ;
Praetorius, D. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (06) :1195-1253
[9]   Quasi-optimal convergence rate for an adaptive finite element method [J].
Cascon, J. Manuel ;
Kreuzer, Christian ;
Nochetto, Ricardo H. ;
Siebert, Kunibert G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2524-2550
[10]   A convergent adaptive algorithm for Poisson's equation [J].
Dorfler, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1106-1124