Gaseous argon time projection chamber with electroluminescence enhanced optical readout

被引:0
|
作者
Amarinei, R. M. [1 ]
Sanchez, F. [1 ]
Bordoni, S. [1 ]
Lux, T. [2 ]
Giannessi, L. [1 ]
Roe, E. [1 ]
Radicioni, E. [3 ,4 ]
机构
[1] Univ Geneva, Dept Phys Nucl & Corpusculaire, Particle Phys Dept DPNC, CH-1205 Geneva, Switzerland
[2] Barcelona Inst Sci & Technol BIST, Inst Fis Altes Energies IFAE, Campus UAB, E-08193 Barcelona, Spain
[3] Univ & Politecn Bari, INFN Sez Bari, Bari, Italy
[4] Univ & Politecn Bari, Dipartimento Interuniv Fis, Bari, Italy
基金
瑞士国家科学基金会;
关键词
Gaseous detectors; Optical detector readout concepts; Time projection Chambers (TPC); SECONDARY SCINTILLATION YIELD;
D O I
10.1088/1748-0221/18/12/P12001
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Systematic uncertainties in accelerator oscillation neutrino experiments arise from nuclear models describing neutrino-nucleus interactions. To mitigate these uncertainties, we can study neutrino-nuclei interactions with detectors possessing enhanced hadron detection capabilities at energies below the nuclear Fermi level. Gaseous detectors not only lower the particle detection threshold but also enable the investigation of nuclear effects on various nuclei by allowing for changes in the gas composition. This approach provides valuable insights into the modelling of neutrino-nucleus interactions and significantly reduces associated uncertainties. Here, we discuss the design and first operation of a gaseous argon time projection chamber optically read. The detector operates at atmospheric pressure and features a single stage of electron amplification based on a thick GEM. Here, photons are produced with wavelengths in the vacuum ultraviolet regime. In an optical detector, the primary constraint is the light yield. This study explores the possibility of increasing the light by applying a low electric field downstream of the ThGEM. In this region, called the electroluminescence gap, electrons propagate and excite the argon atoms, leading to the subsequent emission of photons. This process occurs without any further electron amplification, and it is demonstrated that the total light yield increases up to three times by applying moderate electric fields of the order of 3 kV/cm. Finally, an indirect method is discussed for determining the photon yield/charge gain of a ThGEM, giving a value of 18.3 photons detected per secondary electron.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] ReD dual-phase, liquid argon time projection chamber
    Matteucci, G.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2022, 45 (04):
  • [42] Track resolution measurements for a time projection chamber with gas electron multiplier readout
    Karlen, D
    Poffenberger, P
    Rosenbaum, G
    Carnegie, R
    Dixit, M
    Mes, H
    Sachs, K
    Martin, JP
    2003 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-5, 2004, : 535 - 539
  • [43] Readout control unit of the front end electronics for the ALICE time projection chamber
    Bosch, RE
    Campagnolo, R
    Helstrup, H
    de Parga, AJ
    Lien, JA
    Mota, B
    Musa, L
    Röhrich, D
    Skaali, B
    Ullaland, K
    Vestbo, AS
    Wormald, D
    PROCEEDINGS OF THE EIGHTH WORKSHOP ON ELECTRONICS FOR LHC EXPERIMENTS, 2002, 2002 (03): : 160 - 163
  • [44] Radiation Characterization of a Switched Capacitor Array Readout ASIC for Time Projection Chamber
    Zhao, Xinyuan
    Deng, Zhi
    Liu, Yinong
    Hajdas, Wojciech
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [45] Development of a Time Projection Chamber Readout with Hybrid Pixel Sensors for Beam Monitoring
    Song, Yingdong
    Yang, Haibo
    Zhang, Yuezhao
    Liao, Jianwei
    Jia, Yanhao
    Ma, Peng
    Hou, Yufeng
    Sun, Xiangming
    Wang, Hulin
    Song, Haisheng
    Zhao, Chengxin
    SENSORS, 2024, 24 (08)
  • [46] Design of low-cross-talk readout pads for time projection chamber
    Fujiwara, K.
    Isobe, T.
    Kobayashi, T.
    Taketani, A.
    JOURNAL OF INSTRUMENTATION, 2012, 7
  • [47] Performance of a time-projection chamber with a large-area micro-pixel-chamber readout
    Miuchi, Kentaro
    Hattori, Kaori
    Kabuki, Shigeto
    Kubo, Hidetoshi
    Kurosawa, Shunsuke
    Nishimura, Hironobu
    Takada, Atsushi
    Tsuchiya, Ken'ichi
    Okada, Yoko
    Tanimori, Toru
    Ueno, Kazuki
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 576 (01): : 43 - 46
  • [48] Imaging nuclear decays with Optical Time Projection Chamber
    Miernik, K.
    Dominik, W.
    Janas, Z.
    Pfutzner, M.
    Bingham, C.
    Czyrkowski, H.
    Cwiok, M.
    Darby, I.
    Dabrowski, R.
    Fornitchev, A.
    Ginter, T.
    Golovkov, M.
    Grzywacz, R.
    Karny, M.
    Korgul, A.
    Kusmierz, W.
    Liddick, S.
    Rajabali, M.
    Rodin, A.
    Rykaczewski, K.
    Stepantsov, S.
    Slepniev, R.
    Stolz, A.
    Ter-Akopian, G. M.
    Wolski, R.
    PROTON EMITTING NUCLEI AND RELATED TOPICS, 2007, 961 : 307 - +
  • [49] Optical time projection chamber for imaging nuclear decays
    Miernik, K.
    Dominik, W.
    Czyrkowski, H.
    Darowski, R.
    Fomitchev, A.
    Golovkov, M.
    Janas, Z.
    Kusmierz, W.
    Pfuetmer, M.
    Rodin, A.
    Stepantsov, S.
    Slepniev, R.
    Ter-Akopian, G. M.
    Wolski, R.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 581 (1-2): : 194 - 197
  • [50] SUPERVISED EVENT CLASSIFICATION IN AN OPTICAL TIME PROJECTION CHAMBER
    Guadilla, V.
    Sokolowska, N.
    Pfutzner, M.
    ACTA PHYSICA POLONICA B PROCEEDINGS SUPPLEMENT, 2023, 16 (04)