Gaseous argon time projection chamber with electroluminescence enhanced optical readout

被引:0
|
作者
Amarinei, R. M. [1 ]
Sanchez, F. [1 ]
Bordoni, S. [1 ]
Lux, T. [2 ]
Giannessi, L. [1 ]
Roe, E. [1 ]
Radicioni, E. [3 ,4 ]
机构
[1] Univ Geneva, Dept Phys Nucl & Corpusculaire, Particle Phys Dept DPNC, CH-1205 Geneva, Switzerland
[2] Barcelona Inst Sci & Technol BIST, Inst Fis Altes Energies IFAE, Campus UAB, E-08193 Barcelona, Spain
[3] Univ & Politecn Bari, INFN Sez Bari, Bari, Italy
[4] Univ & Politecn Bari, Dipartimento Interuniv Fis, Bari, Italy
基金
瑞士国家科学基金会;
关键词
Gaseous detectors; Optical detector readout concepts; Time projection Chambers (TPC); SECONDARY SCINTILLATION YIELD;
D O I
10.1088/1748-0221/18/12/P12001
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Systematic uncertainties in accelerator oscillation neutrino experiments arise from nuclear models describing neutrino-nucleus interactions. To mitigate these uncertainties, we can study neutrino-nuclei interactions with detectors possessing enhanced hadron detection capabilities at energies below the nuclear Fermi level. Gaseous detectors not only lower the particle detection threshold but also enable the investigation of nuclear effects on various nuclei by allowing for changes in the gas composition. This approach provides valuable insights into the modelling of neutrino-nucleus interactions and significantly reduces associated uncertainties. Here, we discuss the design and first operation of a gaseous argon time projection chamber optically read. The detector operates at atmospheric pressure and features a single stage of electron amplification based on a thick GEM. Here, photons are produced with wavelengths in the vacuum ultraviolet regime. In an optical detector, the primary constraint is the light yield. This study explores the possibility of increasing the light by applying a low electric field downstream of the ThGEM. In this region, called the electroluminescence gap, electrons propagate and excite the argon atoms, leading to the subsequent emission of photons. This process occurs without any further electron amplification, and it is demonstrated that the total light yield increases up to three times by applying moderate electric fields of the order of 3 kV/cm. Finally, an indirect method is discussed for determining the photon yield/charge gain of a ThGEM, giving a value of 18.3 photons detected per secondary electron.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] The ICARUS T600 liquid Argon time projection chamber
    Arneodo, F
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2004, 525 (1-2): : 118 - 121
  • [32] Liquid Argon Time Projection Chamber research and development in the United States
    Baller, B.
    Bromberg, C.
    Buchanan, N.
    Cavanna, F.
    Chen, H.
    Church, E.
    Gehman, V.
    Greenlee, H.
    Guardincerri, E.
    Jones, B.
    Junk, T.
    Katori, T.
    Kirby, M.
    Lang, K.
    Loer, B.
    Marchionni, A.
    Maruyama, T.
    Mauger, C.
    Menegolli, A.
    Montanari, D.
    Mufson, S.
    Norris, B.
    Pordes, S.
    Raaf, J.
    Rebel, B.
    Sanders, R.
    Soderberg, M.
    St John, J.
    Strauss, T.
    Szelc, A.
    Tope, T.
    Touramanis, C.
    Thorn, C.
    Urheim, J.
    Van de Water, R.
    Wang, H.
    Yu, B.
    Zuckerbrot, M.
    JOURNAL OF INSTRUMENTATION, 2014, 9
  • [33] Electron Neutrino Classification in Liquid Argon Time Projection Chamber Detector
    Plonski, Piotr
    Stefan, Dorota
    Sulej, Robert
    Zaremba, Krzysztof
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON COMPUTER RECOGNITION SYSTEMS, CORES 2015, 2016, 403 : 71 - 79
  • [34] Performance of a three-ton liquid argon time projection chamber
    Cennini, P.
    Cittolin, S.
    Revol, J.-P.
    Rubbia, C.
    Tian, W.-H.
    Picchi, P.
    Cavanna, F.
    Mortari, G.Piano
    Verdecchia, M.
    Cline, D.
    Muratori, G.
    Otwinowski, S.
    Wang, H.
    Zhou, M.
    Bettini, A.
    et al
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, A345 (02) : 230 - 243
  • [35] Cryogenic digital data links for the liquid argon time projection chamber
    Liu, T.
    Gong, D.
    Hou, S.
    Liu, C.
    Su, D. -S.
    Teng, P. -K.
    Xiang, A. C.
    Ye, J.
    JOURNAL OF INSTRUMENTATION, 2012, 7
  • [36] CONSIDERATIONS FOR THE DESIGN OF A TIME PROJECTION LIQUID ARGON IONIZATION-CHAMBER
    GATTI, E
    PADOVINI, G
    QUARTAPELLE, L
    GREENLAW, NE
    RADEKA, V
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1979, 26 (02) : 2910 - 2912
  • [37] MicroBooNE, A Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment
    Katori, Teppei
    NUINT11: THE 7TH INTERNATIONAL WORKSHOP ON NEUTRINO-NUCLEUS INTERACTIONS IN THE FEW GEV REGION, 2011, 1405
  • [38] Argontube: an R&D Liquid Argon Time projection Chamber
    Badhrees, I.
    Ereditato, A.
    Janos, S.
    Haug, S.
    Kreslo, I.
    Messina, M.
    Rossi, B.
    von Rohr, C. Rudolf
    Strauss, T.
    Weber, M.
    Zeller, M.
    JOURNAL OF INSTRUMENTATION, 2012, 7
  • [39] PERFORMANCE OF A 3-TON LIQUID ARGON TIME PROJECTION CHAMBER
    CENNINI, P
    CITTOLIN, S
    REVOL, JP
    RUBBIA, C
    TIAN, WH
    PICCHI, P
    CAVANNA, F
    MORTARI, GP
    VERDECCHIA, M
    CLINE, D
    MURATORI, G
    OTWINOWSKI, S
    WANG, H
    ZHOU, M
    BETTINI, A
    CASAGRANDE, F
    CASOLI, P
    CENTRO, S
    DAINESE, B
    DEVECCHI, C
    PEPATO, A
    PIETROPAOLO, F
    ROSSI, P
    VENTURA, S
    BENETTI, P
    CALLIGARICH, E
    DOLFINI, R
    BERZOLARI, AG
    MAURI, F
    MAZZONE, L
    MONTANARI, C
    PIAZZOLI, A
    RAPPOLDI, A
    RASELLI, GL
    SCANNICCHIO, D
    PERIALE, L
    SUZUKI, S
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1994, 345 (02): : 230 - 243
  • [40] A novel method for event reconstruction in Liquid Argon Time Projection Chamber
    Diwan, M.
    Potekhin, M.
    Viren, B.
    Qian, X.
    Zhang, C.
    17TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2016), 2016, 762