Gaseous argon time projection chamber with electroluminescence enhanced optical readout

被引:0
|
作者
Amarinei, R. M. [1 ]
Sanchez, F. [1 ]
Bordoni, S. [1 ]
Lux, T. [2 ]
Giannessi, L. [1 ]
Roe, E. [1 ]
Radicioni, E. [3 ,4 ]
机构
[1] Univ Geneva, Dept Phys Nucl & Corpusculaire, Particle Phys Dept DPNC, CH-1205 Geneva, Switzerland
[2] Barcelona Inst Sci & Technol BIST, Inst Fis Altes Energies IFAE, Campus UAB, E-08193 Barcelona, Spain
[3] Univ & Politecn Bari, INFN Sez Bari, Bari, Italy
[4] Univ & Politecn Bari, Dipartimento Interuniv Fis, Bari, Italy
基金
瑞士国家科学基金会;
关键词
Gaseous detectors; Optical detector readout concepts; Time projection Chambers (TPC); SECONDARY SCINTILLATION YIELD;
D O I
10.1088/1748-0221/18/12/P12001
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Systematic uncertainties in accelerator oscillation neutrino experiments arise from nuclear models describing neutrino-nucleus interactions. To mitigate these uncertainties, we can study neutrino-nuclei interactions with detectors possessing enhanced hadron detection capabilities at energies below the nuclear Fermi level. Gaseous detectors not only lower the particle detection threshold but also enable the investigation of nuclear effects on various nuclei by allowing for changes in the gas composition. This approach provides valuable insights into the modelling of neutrino-nucleus interactions and significantly reduces associated uncertainties. Here, we discuss the design and first operation of a gaseous argon time projection chamber optically read. The detector operates at atmospheric pressure and features a single stage of electron amplification based on a thick GEM. Here, photons are produced with wavelengths in the vacuum ultraviolet regime. In an optical detector, the primary constraint is the light yield. This study explores the possibility of increasing the light by applying a low electric field downstream of the ThGEM. In this region, called the electroluminescence gap, electrons propagate and excite the argon atoms, leading to the subsequent emission of photons. This process occurs without any further electron amplification, and it is demonstrated that the total light yield increases up to three times by applying moderate electric fields of the order of 3 kV/cm. Finally, an indirect method is discussed for determining the photon yield/charge gain of a ThGEM, giving a value of 18.3 photons detected per secondary electron.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Novel Liquid Argon Time-Projection Chamber Readouts
    Asaadi, Jonathan
    Dwyer, Daniel A.
    Russell, Brooke
    ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, 2024, 74 : 529 - 555
  • [22] The Mini-CAPTAIN liquid argon time projection chamber
    Taylor, C. E.
    Bhandari, B.
    Bian, J.
    Bilton, K.
    Callahan, C.
    Chaves, J.
    Chen, H.
    Cline, D.
    Cooper, R. L.
    Danielson, D. L.
    Danielson, J.
    Dokania, N.
    Elliot, S.
    Fernandes, S.
    Gardiner, S.
    Garvey, G.
    Gehman, V
    Giuliani, F.
    Glavin, S.
    Gold, M.
    Grant, C.
    Guardincerri, E.
    Haines, T.
    Higuera, A.
    Ji, J. Y.
    Kadel, R.
    Kamp, N.
    Karlin, A.
    Ketchum, W.
    Koerner, L. W.
    Lee, D.
    Lee, K.
    Liu, Q.
    Locke, S.
    Louis, W. C.
    Madigan, P.
    Manalaysay, A.
    Maricic, J.
    Martin, E.
    Martinez, M. J.
    Martynenko, S.
    Mauger, C.
    McGrew, C.
    Medina, J.
    Medina, P. J.
    Mills, A.
    Mills, G.
    Mirabal-Martinez, J.
    Olivier, A.
    Pantic, E.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2021, 1001
  • [23] A 3-TON LIQUID ARGON TIME PROJECTION CHAMBER
    BENETTI, P
    BETTINI, A
    CALLIGARICH, E
    CASAGRANDE, F
    CASOLI, P
    CAVANNA, F
    CENNINI, P
    CENTRO, S
    CHENG, M
    CITTOLIN, S
    CLINE, D
    DAINESE, B
    DEVECCHI, C
    DOLFINI, R
    FORTSON, L
    GASPARINI, F
    BERZOLARI, AG
    MAURI, F
    MAZZONE, L
    MONTANARI, C
    MURATORI, G
    OTWINOWSKI, S
    PEPATO, A
    PERIALE, L
    MORTARI, GP
    PIAZZOLI, A
    PICCHI, P
    PIETROPAOLO, F
    RAPPOLDI, A
    RASELLI, GL
    ROSSI, P
    RUBBIA, C
    SCANNICCHIO, D
    SUZUKI, S
    VENTURA, S
    WANG, H
    ZHOU, M
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1993, 332 (03): : 395 - 412
  • [24] MicroBooNE: A New Liquid Argon Time Projection Chamber Experiment
    Soderberg, Mitchell
    SIXTH INTERNATIONAL WORKSHOP ON NEUTRINO-NUCLEUS INTERACTIONS IN THE FEW-GEV REGION, 2009, 1189 : 83 - 87
  • [25] Image Segmentation in Liquid Argon Time Projection Chamber Detector
    Plonski, Piotr
    Stefan, Dorota
    Sulej, Robert
    Zaremba, Krzysztof
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2015, 9119 : 606 - 615
  • [26] Directionality for nuclear recoils in a liquid argon Time Projection Chamber
    Bottino, Bianca
    PARTICLES AND NUCLEI INTERNATIONAL CONFERENCE 2021, PANIC2021, 2021,
  • [27] TESTS OF A TIME PROJECTION CHAMBER MODULE WITH DELAY-LINE READOUT
    BUDAGOV, YA
    GLAGOLEV, VV
    OMELYANENKO, AA
    SEMENOV, AA
    HLINKA, V
    POVINEC, P
    SITAR, B
    KLADIVA, E
    SEMAN, M
    SPALEK, J
    ARTYKOV, AM
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1989, 284 (2-3): : 433 - 438
  • [28] ZIGZAG-SHAPED PADS FOR CATHODE READOUT OF A TIME PROJECTION CHAMBER
    MIKI, T
    ITOH, R
    KAMAE, T
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1985, 236 (01): : 64 - 68
  • [29] MULTICHANNEL ANALOG TO DIGITAL CONVERTER AND READOUT SYSTEM FOR THE TIME PROJECTION CHAMBER
    MAIER, MR
    OLSON, SR
    NAKAMURA, M
    GOULDING, FS
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1979, 26 (01) : 697 - 700
  • [30] NEXT-CRAB-0: a high pressure gaseous xenon time projection chamber with a direct VUV camera based readout
    Byrnes, N. K.
    Parmaksiz, I
    Adams, C.
    Asaadi, J.
    Baeza-Rubio, J.
    Bailey, K.
    Church, E.
    Gonzalez-Diaz, D.
    Higley, A.
    Jones, B. J. P.
    Mistry, K.
    Moya, I. A.
    Nygren, D. R.
    Oyedele, P.
    Rogers, L.
    Stogsdill, K.
    Almazan, H.
    Alvarez, V.
    Aparicio, B.
    Aranburu, A. I.
    Arazi, L.
    Arnquist, I. J.
    Ayet, S.
    Azevedo, C. D. R.
    Ballester, F.
    del Barrio-Torregrosa, M.
    Bayo, A.
    Benlloch-Rodriguez, J. M.
    Borges, F. I. G. M.
    Bounasser, S.
    Carcel, S.
    Carrion, J. V.
    Cebrian, S.
    Cid, L.
    Conde, C. A. N.
    Contreras, T.
    Cossio, F. P.
    Dey, E.
    Diaz, G.
    Dickel, T.
    Elorza, M.
    Escada, J.
    Esteve, R.
    Fahs, A.
    Felkai, R.
    Fernandes, L. M. P.
    Ferrario, P.
    Ferreira, A. L.
    Foss, F. W.
    Freitas, E. D. C.
    JOURNAL OF INSTRUMENTATION, 2023, 18 (08)