Gaseous argon time projection chamber with electroluminescence enhanced optical readout

被引:0
|
作者
Amarinei, R. M. [1 ]
Sanchez, F. [1 ]
Bordoni, S. [1 ]
Lux, T. [2 ]
Giannessi, L. [1 ]
Roe, E. [1 ]
Radicioni, E. [3 ,4 ]
机构
[1] Univ Geneva, Dept Phys Nucl & Corpusculaire, Particle Phys Dept DPNC, CH-1205 Geneva, Switzerland
[2] Barcelona Inst Sci & Technol BIST, Inst Fis Altes Energies IFAE, Campus UAB, E-08193 Barcelona, Spain
[3] Univ & Politecn Bari, INFN Sez Bari, Bari, Italy
[4] Univ & Politecn Bari, Dipartimento Interuniv Fis, Bari, Italy
基金
瑞士国家科学基金会;
关键词
Gaseous detectors; Optical detector readout concepts; Time projection Chambers (TPC); SECONDARY SCINTILLATION YIELD;
D O I
10.1088/1748-0221/18/12/P12001
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Systematic uncertainties in accelerator oscillation neutrino experiments arise from nuclear models describing neutrino-nucleus interactions. To mitigate these uncertainties, we can study neutrino-nuclei interactions with detectors possessing enhanced hadron detection capabilities at energies below the nuclear Fermi level. Gaseous detectors not only lower the particle detection threshold but also enable the investigation of nuclear effects on various nuclei by allowing for changes in the gas composition. This approach provides valuable insights into the modelling of neutrino-nucleus interactions and significantly reduces associated uncertainties. Here, we discuss the design and first operation of a gaseous argon time projection chamber optically read. The detector operates at atmospheric pressure and features a single stage of electron amplification based on a thick GEM. Here, photons are produced with wavelengths in the vacuum ultraviolet regime. In an optical detector, the primary constraint is the light yield. This study explores the possibility of increasing the light by applying a low electric field downstream of the ThGEM. In this region, called the electroluminescence gap, electrons propagate and excite the argon atoms, leading to the subsequent emission of photons. This process occurs without any further electron amplification, and it is demonstrated that the total light yield increases up to three times by applying moderate electric fields of the order of 3 kV/cm. Finally, an indirect method is discussed for determining the photon yield/charge gain of a ThGEM, giving a value of 18.3 photons detected per secondary electron.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A Time Projection Chamber for Continuous Readout
    Berger, M.
    Berger-Chen, J. -C.
    Cusanno, F.
    Fabbietti, L.
    Gasik, P.
    Muenzer, R.
    Ball, M.
    Boehmer, F. V.
    Dorheim, S.
    Eckstein, K.
    Hoenle, A.
    Hoeppner, C.
    Ketzer, B.
    Konorov, I.
    Neubert, S.
    Paul, S.
    Rauch, J.
    Uhl, S.
    Arora, R.
    Fruehauf, J.
    Hackler, T.
    Hehner, J.
    Kis, M.
    Kleipa, V.
    Kunkel, J.
    Kurz, N.
    Leifels, Y.
    Peters, K.
    Risch, H.
    Schmidt, C. J.
    Schmitt, L.
    Schwab, S.
    Soyk, D.
    Voss, B.
    Weinert, J.
    Beck, R.
    Kaiser, D.
    Lang, M.
    Schmitz, R.
    Walther, D.
    Buehler, P.
    Muellner, P.
    Zmeskal, J.
    Herrmann, N.
    Vandenbroucke, M.
    2013 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2013,
  • [2] A gaseous time projection chamber with Micromegas readout for low-radioactive material screening
    Du, Haiyan
    Du, Chengbo
    Han, Ke
    He, Shengming
    Liu, Liqiang
    Meng, Yue
    Wang, Shaobo
    Zhang, Tao
    Zhang, Wenming
    Zhao, Li
    Zhou, Jifang
    RADIATION DETECTION TECHNOLOGY AND METHODS, 2023, 7 (01) : 90 - 99
  • [3] A gaseous time projection chamber with Micromegas readout for low-radioactive material screening
    Haiyan Du
    Chengbo Du
    Ke Han
    Shengming He
    Liqiang Liu
    Yue Meng
    Shaobo Wang
    Tao Zhang
    Wenming Zhang
    Li Zhao
    Jifang Zhou
    Radiation Detection Technology and Methods, 2023, 7 : 90 - 99
  • [4] THE LIQUID ARGON TIME PROJECTION CHAMBER
    DOE, PJ
    MAHLER, HJ
    CHEN, HH
    AIP CONFERENCE PROCEEDINGS, 1984, (108) : 84 - 93
  • [5] A readout system for the STAR time projection chamber
    Anderson, M
    Bieser, F
    Bossingham, R
    Cebra, D
    Hjort, EL
    Klein, SR
    Kleinfelder, S
    Vu, CQ
    Wieman, H
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 499 (2-3): : 679 - 691
  • [6] A time projection chamber with optical readout for charged particle track structure imaging
    Titt, U
    Breskin, A
    Chechik, R
    Dangendorf, V
    Schmidt-Bocking, H
    Schuhmacher, H
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1998, 416 (01): : 85 - 99
  • [7] OPERATION OF A LIQUID ARGON TIME PROJECTION CHAMBER
    MAHLER, HJ
    DOE, PJ
    CHEN, HH
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1983, 30 (01) : 86 - 89
  • [8] The ICARUS liquid argon time projection chamber
    Arneodo, F
    Badertscher, A
    Baiboussinov, B
    Battistoni, G
    Benetti, P
    Bernardini, E
    di Tigliole, AB
    Brunetti, R
    Bueno, A
    Calligarich, E
    Campanelli, M
    Carpanese, C
    Cavalli, D
    Cavanna, F
    Cennini, P
    Centro, S
    Cesana, A
    Chen, C
    Chen, Y
    Cline, D
    Dolfini, R
    Ferrari, A
    Berzolari, AG
    Goudsmit, P
    He, K
    Huan, X
    Kruse, A
    Li, Z
    Lu, F
    Ma, J
    Mauri, F
    Matthey, C
    Mazza, D
    Mazzone, L
    Meng, G
    Montanari, C
    Nurzia, GP
    Otwinowski, S
    Palamara, O
    Pascoli, D
    Periale, L
    Petrera, S
    Piano Mortari, G
    Piazzoli, A
    Picchi, P
    Pietropaolo, F
    Rancati, T
    Rappoldi, A
    Raselli, GL
    Rico, J
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 471 (1-2): : 272 - 275
  • [9] The continuous readout stream of the MicroBooNE liquid argon time projection chamber for detection of supernova burst neutrinos
    Abratenko, P.
    Alrashed, M.
    An, R.
    Anthony, J.
    Asaadi, J.
    Ashkenazi, A.
    Balasubramanian, S.
    Baller, B.
    Barnes, C.
    Barr, G.
    Basque, V
    Bathe-Peters, L.
    Rodrigues, O. Benevides
    Berkman, S.
    Bhanderi, A.
    Bhat, A.
    Bishai, M.
    Blake, A.
    Bolton, T.
    Camilleri, L.
    Caratelli, D.
    Terrazas, I. Caro
    Fernandez, R. Castillo
    Cavanna, F.
    Cerati, G.
    Chen, Y.
    Church, E.
    Cianci, D.
    Cohen, E. O.
    Conrad, J. M.
    Convery, M.
    Cooper-Troendle, L.
    Crespo-Anadon, J., I
    Del Tutto, M.
    Devitt, D.
    Diurba, R.
    Domine, L.
    Dorrill, R.
    Duffy, K.
    Dytman, S.
    Eberly, B.
    Ereditato, A.
    Sanchez, L. Escudero
    Evans, J. J.
    Fadeeva, A. A.
    Aguirre, G. A. Fiorentini
    Fitzpatrick, R. S.
    Fleming, B. T.
    Foppiani, N.
    Franco, D.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (02)
  • [10] Identification of low energy nuclear recoils in a gas time projection chamber with optical readout
    Baracchini, E.
    Benussi, L.
    Bianco, S.
    Capoccia, C.
    Caponero, M.
    Cavoto, G.
    Cortez, A.
    Costa, I. A.
    Di Marco, E.
    D'Imperio, G.
    Dho, G.
    Iacoangeli, F.
    Maccarrone, G.
    Marafini, M.
    Mazzitelli, G.
    Messina, A.
    Nobrega, R. A.
    Orlandi, A.
    Paoletti, E.
    Passamonti, L.
    Petrucci, F.
    Piccolo, D.
    Pierluigi, D.
    Pinci, D.
    Renga, F.
    Rosatelli, F.
    Russo, A.
    Saviano, G.
    Tesauro, R.
    Tomassini, S.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (02)