Age-associated cortical similarity networks correlate with cell type-specific transcriptional signatures

被引:1
|
作者
Niu, Jinpeng [1 ,2 ,3 ]
Jiao, Qing [1 ,2 ,3 ]
Cui, Dong [1 ,2 ,3 ]
Dou, Ruhai [1 ,2 ,3 ]
Guo, Yongxin [1 ,2 ,3 ]
Yu, Guanghui [1 ,2 ,3 ]
Zhang, Xiaotong [2 ,3 ]
Sun, Fengzhu [2 ,3 ]
Qiu, Jianfeng [2 ,3 ]
Dong, Li [4 ]
Cao, Weifang [1 ,2 ,3 ,5 ,6 ]
机构
[1] Shandong First Med Univ, Affiliated Hosp 2, Dept Radiol, Tai An 271000, Peoples R China
[2] Shandong First Med Univ, Sch Radiol, Tai An 271016, Peoples R China
[3] Shandong Acad Med Sci, Tai An 271016, Peoples R China
[4] Univ Elect Sci & Technol China, Clin Hosp, Sch Life Sci & Technol, Chengdu Brain Sci Inst,MOE,Key Lab Neuroinformat, Chengdu 610054, Peoples R China
[5] Shandong First Med Univ, Sch Radiol, 619 Changcheng Rd, Tai An 271016, Shandong, Peoples R China
[6] Shandong Acad Med Sci, 619 Changcheng Rd, Tai An 271016, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
aging; cerebral cortex; morphometric similarity; gene transcription; MORPHOMETRIC SIMILARITY; GENETIC-VARIANTS; EXPRESSION; REGIONS;
D O I
10.1093/cercor/bhad454
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Human brain structure shows heterogeneous patterns of change across adults aging and is associated with cognition. However, the relationship between cortical structural changes during aging and gene transcription signatures remains unclear. Here, using structural magnetic resonance imaging data of two separate cohorts of healthy participants from the Cambridge Centre for Aging and Neuroscience (n = 454, 18-87 years) and Dallas Lifespan Brain Study (n = 304, 20-89 years) and a transcriptome dataset, we investigated the link between cortical morphometric similarity network and brain-wide gene transcription. In two cohorts, we found reproducible morphometric similarity network change patterns of decreased morphological similarity with age in cognitive related areas (mainly located in superior frontal and temporal cortices), and increased morphological similarity in sensorimotor related areas (postcentral and lateral occipital cortices). Changes in morphometric similarity network showed significant spatial correlation with the expression of age-related genes that enriched to synaptic-related biological processes, synaptic abnormalities likely accounting for cognitive decline. Transcription changes in astrocytes, microglia, and neuronal cells interpreted most of the age-related morphometric similarity network changes, which suggest potential intervention and therapeutic targets for cognitive decline. Taken together, by linking gene transcription signatures to cortical morphometric similarity network, our findings might provide molecular and cellular substrates for cortical structural changes related to cognitive decline across adults aging.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures
    Li, Jiao
    Seidlitz, Jakob
    Suckling, John
    Fan, Feiyang
    Ji, Gong-Jun
    Meng, Yao
    Yang, Siqi
    Wang, Kai
    Qiu, Jiang
    Chen, Huafu
    Liao, Wei
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [2] Cortical structural differences in major depressive disorder correlate with cell type-specific transcriptional signatures
    Jiao Li
    Jakob Seidlitz
    John Suckling
    Feiyang Fan
    Gong-Jun Ji
    Yao Meng
    Siqi Yang
    Kai Wang
    Jiang Qiu
    Huafu Chen
    Wei Liao
    Nature Communications, 12
  • [3] Seeding-competent early tau multimers are associated with cell type-specific transcriptional signatures
    Feleke, Rahel
    Jogaudaite, Simona
    Velentza-Almpani, Elisavet
    Yeung-Yeung, Leung
    Clode, Daniel
    Ko, Jeong Hun
    Shin, Ben
    Matthews, Steve
    Otero-Jimenez, Maria
    Wojewska, Marcelina J.
    Gray-Rodriguez, Sandra
    Marzi, Sarah J.
    Spires-Jones, Maxwell P.
    Spires-Jones, Tara L.
    Johnson, Michael R.
    Alegre-Abarrategui, Javier
    ACTA NEUROPATHOLOGICA, 2025, 149 (01)
  • [4] Dynamic regulatory module networks for inference of cell type-specific transcriptional networks
    Siahpirani, Alireza Fotuhi
    Knaack, Sara
    Chasman, Deborah
    Seirup, Morten
    Sridharan, Rupa
    Stewart, Ron
    Thomson, James
    Roy, Sushmita
    GENOME RESEARCH, 2022, 32 (07) : 1367 - 1384
  • [5] Systems Biology Update: Cell Type-Specific Transcriptional Regulatory Networks
    Pu, Li
    Brady, Siobhan
    PLANT PHYSIOLOGY, 2010, 152 (02) : 411 - 419
  • [6] Age-associated differences in prevalence of group A streptococcal type-specific M antibodies in children
    Jaggi, Preeti
    Dale, James B.
    Chiang, Edna
    Beniwal, Poonam
    Kabat, William
    Shulman, Stanford T.
    EUROPEAN JOURNAL OF PEDIATRICS, 2009, 168 (06) : 679 - 683
  • [7] Age-associated differences in prevalence of group A streptococcal type-specific M antibodies in children
    Preeti Jaggi
    James B. Dale
    Edna Chiang
    Poonam Beniwal
    William Kabat
    Stanford T. Shulman
    European Journal of Pediatrics, 2009, 168 : 679 - 683
  • [8] Monocytic cell type-specific transcriptional induction of collagenase
    Pierce, RA
    Sandefur, S
    Doyle, GAR
    Welgus, HG
    JOURNAL OF CLINICAL INVESTIGATION, 1996, 97 (08): : 1890 - 1899
  • [9] Cell Type-Specific Effects of Adenosine on Cortical Neurons
    van Aerde, Karlijn I.
    Qi, Guanxiao
    Feldmeyer, Dirk
    CEREBRAL CORTEX, 2015, 25 (03) : 772 - 787
  • [10] Cortical Morphometric Similarity Remodeling in Traumatic Brain Injury Links Cognitive Impairments with Transcriptional Changes and Type-Specific Cells
    Pan, Yizhen
    Wang, Zhuonan
    Zhang, Xiang
    Zhao, Wenpu
    Zhang, Haonan
    Li, Xuan
    Jia, Xiaoyan
    Ji, Qiuyu
    Yin, Bo
    Bai, Guanghui
    Wu, Tingting
    Lee, Zhiqi
    Ding, Jierui
    Shi, Lei
    Zhang, Jie
    Salat, David H.
    Bai, Lijun
    ADVANCED SCIENCE, 2025,