Learning feature alignment and dual correlation for few-shot image classification

被引:2
|
作者
Huang, Xilang [1 ]
Choi, Seon Han [1 ,2 ]
机构
[1] Ewha Womans Univ, Dept Elect & Elect Engn, Seoul, South Korea
[2] Ewha Womans Univ, Grad Program Smart Factory, Seoul, South Korea
关键词
image classification; machine learning; metric learning; NETWORK;
D O I
10.1049/cit2.12273
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few-shot image classification is the task of classifying novel classes using extremely limited labelled samples. To perform classification using the limited samples, one solution is to learn the feature alignment (FA) information between the labelled and unlabelled sample features. Most FA methods use the feature mean as the class prototype and calculate the correlation between prototype and unlabelled features to learn an alignment strategy. However, mean prototypes tend to degenerate informative features because spatial features at the same position may not be equally important for the final classification, leading to inaccurate correlation calculations. Therefore, the authors propose an effective intraclass FA strategy that aggregates semantically similar spatial features from an adaptive reference prototype in low-dimensional feature space to obtain an informative prototype feature map for precise correlation computation. Moreover, a dual correlation module to learn the hard and soft correlations was developed by the authors. This module combines the correlation information between the prototype and unlabelled features in both the original and learnable feature spaces, aiming to produce a comprehensive cross-correlation between the prototypes and unlabelled features. Using both FA and cross-attention modules, our model can maintain informative class features and capture important shared features for classification. Experimental results on three few-shot classification benchmarks show that the proposed method outperformed related methods and resulted in a 3% performance boost in the 1-shot setting by inserting the proposed module into the related methods.
引用
收藏
页码:303 / 318
页数:16
相关论文
共 50 条
  • [21] Semantic-Aware Feature Aggregation for Few-Shot Image Classification
    Hao, Fusheng
    Wu, Fuxiang
    He, Fengxiang
    Zhang, Qieshi
    Song, Chengqun
    Cheng, Jun
    NEURAL PROCESSING LETTERS, 2023, 55 (05) : 6595 - 6609
  • [22] Few-Shot Directed Meta-Learning for Image Classification
    Ouyang, Jihong
    Duan, Ganghai
    Liu, Siguang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2023, 37 (01)
  • [23] Few-shot image classification based on gradual machine learning
    Chen, Na
    Kuang, Xianming
    Liu, Feiyu
    Wang, Kehao
    Zhang, Lijun
    Chen, Qun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [24] Deep transformer and few-shot learning for hyperspectral image classification
    Ran, Qiong
    Zhou, Yonghao
    Hong, Danfeng
    Bi, Meiqiao
    Ni, Li
    Li, Xuan
    Ahmad, Muhammad
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1323 - 1336
  • [25] Cross-Domain Few-Shot Learning Based on Feature Disentanglement for Hyperspectral Image Classification
    Qin, Boao
    Feng, Shou
    Zhao, Chunhui
    Li, Wei
    Tao, Ran
    Xiang, Wei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [26] Feature Contrastive Transfer Learning for Few-Shot Long-Tail Sonar Image Classification
    Bai, Zhongyu
    Xu, Hongli
    Ding, Qichuan
    Zhang, Xiangyue
    IEEE COMMUNICATIONS LETTERS, 2025, 29 (03) : 562 - 566
  • [27] Few-Shot Classification With Feature Reconstruction Bias
    Li, Zhen
    Wang, Lang
    Ding, Shuo
    Yang, Xiaochen
    Li, Xiaoxu
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 526 - 532
  • [28] SELF-SUPERVISED LEARNING FOR FEW-SHOT IMAGE CLASSIFICATION
    Chen, Da
    Chen, Yuefeng
    Li, Yuhong
    Mao, Feng
    He, Yuan
    Xue, Hui
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1745 - 1749
  • [29] Multi-Level Correlation Network For Few-Shot Image Classification
    Dang, Yunkai
    Sun, Meijun
    Zhang, Min
    Chen, Zhengyu
    Zhang, Xinliang
    Wang, Zheng
    Wang, Donglin
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 2909 - 2914
  • [30] Part-Level Relationship Learning for Fine-Grained Few-Shot Image Classification
    Wang, Chuanming
    Fu, Huiyuan
    Liu, Peiye
    Ma, Huadong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2025, 27 : 1448 - 1460