Constant Q-Transform-Based Deep Learning Architecture for Detection of Obstructive Sleep Apnea

被引:9
作者
Kandukuri, Usha Rani [1 ]
Prakash, Allam Jaya [2 ]
Patro, Kiran Kumar [3 ]
Neelapu, Bala Chakravarthy [1 ]
Tadeusiewicz, Ryszard [4 ]
Plawiak, Pawel [5 ,6 ]
机构
[1] Natl Inst Technol, Dept Biotechnol & Med Engn, Sect 1, Rourkela 769008, India
[2] VIT, Sch Comp Sci & Engn SCOPE, Vellore, India
[3] Aditya Inst Technol & Management, Dept Elect & Commun Engn, Tekkali 532201, AP, India
[4] AGH Univ Sci & Technol, Dept Biocybernet & Biomed Engn, A Mickiewicza 30, PL-30059 Krakow, Poland
[5] Cracow Univ Technol, Dept Comp Sci, Ul Warszawska 24, PL-31155 Krakow, Poland
[6] Polish Acad Sci, Inst Theoret & Appl Informat, Ul Baltycka 5, PL-44100 Gliwice, Poland
关键词
apnea; convolutional neural network; constant Q-transform; deep learning; single-lead ECG signals; non-apnea; obstructive sleep apnea; MODELS;
D O I
10.34768/amcs-2023-0036
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Obstructive sleep apnea (OSA) is a long-term sleep disorder that causes temporary disruption in breathing while sleeping. Polysomnography (PSG) is the technique for monitoring different signals during the patient's sleep cycle, including electroencephalogram (EEG), electromyography (EMG), electrocardiogram (ECG), and oxygen saturation (SpO2). Due to the high cost and inconvenience of polysomnography, the usefulness of ECG signals in detecting OSA is explored in this work, which proposes a two-dimensional convolutional neural network (2D-CNN) model for detecting OSA using ECG signals. A publicly available apnea ECG database from PhysioNet is used for experimentation. Further, a constant Q-transform (CQT) is applied for segmentation, filtering, and conversion of ECG beats into images. The proposed CNN model demonstrates an average accuracy, sensitivity and specificity of 91.34%, 90.68% and 90.70%, respectively. The findings obtained using the proposed approach are comparable to those of many other existing methods for automatic detection of OSA.
引用
收藏
页码:493 / 506
页数:14
相关论文
共 46 条
[1]   UncertaintyFuseNet: Robust uncertainty-aware hierarchical feature fusion model with Ensemble Monte Carlo Dropout for COVID-19 detection [J].
Abdar, Moloud ;
Salari, Soorena ;
Qahremani, Sina ;
Lam, Hak-Keung ;
Karray, Fakhri ;
Hussain, Sadiq ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2023, 90 :364-381
[2]   The need for quantification of uncertainty in artificial intelligence for clinical data analysis: increasing the level of trust in the decision-making process [J].
Abdar, Moloud ;
Khosravi, Abbas ;
Islam, Sheikh Mohammed Shariful ;
Acharya, U. Rajendra ;
Vasilakos, Athanasios V. .
IEEE SYSTEMS MAN AND CYBERNETICS MAGAZINE, 2022, 8 (03) :28-40
[3]   Hercules: Deep Hierarchical Attentive Multilevel Fusion Model With Uncertainty Quantification for Medical Image Classification [J].
Abdar, Moloud ;
Fahami, Mohammad Amin ;
Rundo, Leonardo ;
Radeva, Petia ;
Frangi, Alejandro F. ;
Acharya, U. Rajendra ;
Khosravi, Abbas ;
Lam, Hak-Keung ;
Jung, Alexander ;
Nahavandi, Saeid .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (01) :274-285
[4]   A review of uncertainty quantification in deep learning: Techniques, applications and challenges [J].
Abdar, Moloud ;
Pourpanah, Farhad ;
Hussain, Sadiq ;
Rezazadegan, Dana ;
Liu, Li ;
Ghavamzadeh, Mohammad ;
Fieguth, Paul ;
Cao, Xiaochun ;
Khosravi, Abbas ;
Acharya, U. Rajendra ;
Makarenkov, Vladimir ;
Nahavandi, Saeid .
INFORMATION FUSION, 2021, 76 :243-297
[5]   BAED: A secured biometric authentication system using ECG signal based on deep learning techniques [J].
Allam, Jaya Prakash ;
Patro, Kiran Kumar ;
Hammad, Mohamed ;
Tadeusiewicz, Ryszard ;
Plawiak, Pawel .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (04) :1081-1093
[6]   Classification of Obstructive Sleep Apnoea from single-lead ECG signals using convolutional neural and Long Short Term Memory networks [J].
Almutairi, Haifa ;
Hassan, Ghulam Mubashar ;
Datta, Amitava .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 69
[7]   A Tunable-Q wavelet transform and quadruple symmetric pattern based EEG signal classification method [J].
Aydemir, Emrah ;
Tuncer, Turker ;
Dogan, Sengul .
MEDICAL HYPOTHESES, 2020, 134
[8]  
Balim MA, 2021, EUR SIGNAL PR CONF, P1306, DOI 10.23919/EUSIPCO54536.2021.9616160
[9]   CCPNet136: automated detection of schizophrenia using carbon chain pattern and iterative TQWT technique with EEG signals [J].
Baygin, Mehmet ;
Barua, Prabal Datta ;
Chakraborty, Subrata ;
Tuncer, Ilknur ;
Dogan, Sengul ;
Palmer, Elizabeth ;
Tuncer, Turker ;
Kamath, Aditya P. ;
Ciaccio, Edward J. ;
Acharya, U. Rajendra .
PHYSIOLOGICAL MEASUREMENT, 2023, 44 (03)
[10]  
Bo HJ, 2014, 2014 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), VOLS 1-2, P58, DOI 10.1109/ICALIP.2014.7009757