On extremal cacti with respect to the first degree-based entropy

被引:0
|
作者
Li, Weimin [1 ]
Li, Jianping [1 ]
Zhang, Jianbin [2 ]
He, Weihua [1 ]
机构
[1] Guangdong Univ Technol, Sch Math & Stat, Guangzhou 510090, Peoples R China
[2] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
来源
OPEN MATHEMATICS | 2023年 / 21卷 / 01期
关键词
graph entropy; cactus; first degree-based entropy; GRAPH ENTROPY;
D O I
10.1515/math-2023-0108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph with degree sequence D(G) = (d1 d2,,.,dn) The first degree-based entropy of G is defined asI(1)(G) = 1n Sigma(n)(i=1)d(i) -1/Sigma(n)(i=1) d(i) - 1/Sigma(n)(i) = 1 di Sigma(n)(i) (=1)(d(1) 1nd(i)). 1. In this article, we give sharp upper and lower bounds for the first degree-based entropy of graphs in C(n k), and characterize the corresponding extremal graphs when each bound is attained, where C(n k), is the set of all cacti with n vertices and k cycles.
引用
收藏
页数:7
相关论文
共 23 条
  • [11] A Conjecture Regarding the Extremal Values of Graph Entropy Based on Degree Powers
    Das, Kinkar Chandra
    Dehmer, Matthias
    ENTROPY, 2016, 18 (05)
  • [12] Extremal cacti of given matching number with respect to the distance spectral radius
    Zhang, Minjie
    Li, Shuchao
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 291 : 89 - 97
  • [13] Degree-based entropies of networks revisited
    Cao, Shujuan
    Dehmer, Matthias
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 261 : 141 - 147
  • [14] Bounds for degree-based network entropies
    Chen, Zengqiang
    Dehmer, Matthias
    Shi, Yongtang
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 265 : 983 - 993
  • [15] Generalized Degree-Based Graph Entropies
    Lu, Guoxiang
    SYMMETRY-BASEL, 2017, 9 (03):
  • [16] Extremality of degree-based graph entropies
    Cao, Shujuan
    Dehmer, Matthias
    Shi, Yongtang
    INFORMATION SCIENCES, 2014, 278 : 22 - 33
  • [17] On Extremal Cacti with Respect to the Edge Szeged Index and Edge-vertex Szeged Index
    He, Shengjie
    Hao, Rong-Xia
    Yu, Aimei
    FILOMAT, 2018, 32 (11) : 4069 - 4078
  • [18] RETRACTED: On Topological Properties of Degree-Based Entropy of Hex-Derived Network of Type 3 (Retracted Article)
    Zhu, Cun-Bin
    Ali, Haidar
    Ali, Bilal
    Ali, Parvez
    Liu, Jia-Bao
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [19] Some New Properties for Degree-Based Graph Entropies
    Lu, Guoxiang
    Li, Bingqing
    Wang, Lijia
    ENTROPY, 2015, 17 (12) : 8217 - 8227
  • [20] Maximum values of degree-based entropies of bipartite graphs
    Dong, Yanni
    Qiao, Shengning
    Chen, Bing
    Wan, Pengfei
    Zhang, Shenggui
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 401