Machine-learned acceleration for molecular dynamics in CASTEP

被引:10
|
作者
Stenczel, Tamas K. [1 ]
El-Machachi, Zakariya [2 ]
Liepuoniute, Guoda [1 ]
Morrow, Joe D. [2 ]
Bartok, Albert P. [3 ,4 ]
Probert, Matt I. J. [5 ]
Csanyi, Gabor [1 ]
Deringer, Volker L. [2 ]
机构
[1] Univ Cambridge, Engn Lab, Cambridge CB2 1PZ, England
[2] Univ Oxford, Dept Chem, Inorgan Chem Lab, Oxford, England
[3] Univ Warwick, Dept Phys, Warwick, England
[4] Univ Warwick, Warwick Ctr Predict Modelling, Sch Engn, Warwick, England
[5] Univ York, Sch Phys Engn & Technol, York, England
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 159卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
GENERATION; POTENTIALS; DIAMOND; CARBON;
D O I
10.1063/5.0155621
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning (ML) methods are of rapidly growing interest for materials modeling, and yet, the use of ML interatomic potentials for new systems is often more demanding than that of established density-functional theory (DFT) packages. Here, we describe computational methodology to combine the CASTEP first-principles simulation software with the on-the-fly fitting and evaluation of ML interatomic potential models. Our approach is based on regular checking against DFT reference data, which provides a direct measure of the accuracy of the evolving ML model. We discuss the general framework and the specific solutions implemented, and we present an example application to high-temperature molecular-dynamics simulations of carbon nanostructures. The code is freely available for academic research.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] English morphological analysis with machine-learned rules
    Tang, Xuri
    PACLIC 20: Proceedings of the 20th Pacific Asia Conference on Language, Information and Computation, 2006, : 35 - 41
  • [32] How to validate machine-learned interatomic potentials
    Morrow, Joe D.
    Gardner, John L. A.
    Deringer, Volker L.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (12):
  • [33] Machine-Learned Coarse-Grained Models
    Bejagam, Karteek K.
    Singh, Samrendra
    An, Yaxin
    Deshmukh, Sanket A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (16): : 4667 - 4672
  • [34] Machine-Learned Electronically Excited States with the MolOrbImage Generated from the Molecular Ground State
    Chen, Ziyong
    Yam, Vivian Wing-Wah
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (07): : 1955 - 1961
  • [35] Machine-Learned Electronically Excited States with the MolOrbImage Generated from the Molecular Ground State
    Chen, Ziyong
    Yam, Vivian Wing-Wah
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, : 1955 - 1961
  • [36] Molecular dynamics simulations of heat transport using machine-learned potentials: A mini-review and tutorial on GPUMD with neuroevolution potentials
    Dong, Haikuan
    Shi, Yongbo
    Ying, Penghua
    Xu, Ke
    Liang, Ting
    Wang, Yanzhou
    Zeng, Zezhu
    Wu, Xin
    Zhou, Wenjiang
    Xiong, Shiyun
    Chen, Shunda
    Fan, Zheyong
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (16)
  • [37] Developing Machine-Learned Potentials for Coarse-Grained Molecular Simulations: Challenges and Pitfalls
    Ricci, Eleonora
    Giannakopoulos, George
    Karkaletsis, Vangelis
    Theodorou, Doros N.
    Vergadou, Niki
    PROCEEDINGS OF THE 12TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE, SETN 2022, 2022,
  • [38] Chemistry-informed molecular graph as reaction descriptor for machine-learned retrosynthesis planning
    Zhang, Baicheng
    Zhang, Xiaolong
    Du, Wenjie
    Song, Zhaokun
    Zhang, Guozhen
    Zhang, Guoqing
    Wang, Yang
    Chen, Xin
    Jiang, Jun
    Luo, Yi
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (41)
  • [39] Untangling high-temperature thermal expansion and lattice thermal conductivity behavior of vanadium using machine-learned molecular dynamics
    Malgope, Samiran
    Gupta, Mayanak K.
    Bag, Sourav
    Mittal, Ranjan
    Bhattacharya, Shovit
    Singh, Ajay
    Chaplot, Samrath L.
    PHYSICAL REVIEW B, 2024, 110 (05)
  • [40] Machine-Learned Classifiers for Protocol Selection on a Shared Network
    Anvari, Hamidreza
    Huard, Jesse
    Lu, Paul
    MACHINE LEARNING FOR NETWORKING, 2019, 11407 : 98 - 116