Machine-learned acceleration for molecular dynamics in CASTEP

被引:10
|
作者
Stenczel, Tamas K. [1 ]
El-Machachi, Zakariya [2 ]
Liepuoniute, Guoda [1 ]
Morrow, Joe D. [2 ]
Bartok, Albert P. [3 ,4 ]
Probert, Matt I. J. [5 ]
Csanyi, Gabor [1 ]
Deringer, Volker L. [2 ]
机构
[1] Univ Cambridge, Engn Lab, Cambridge CB2 1PZ, England
[2] Univ Oxford, Dept Chem, Inorgan Chem Lab, Oxford, England
[3] Univ Warwick, Dept Phys, Warwick, England
[4] Univ Warwick, Warwick Ctr Predict Modelling, Sch Engn, Warwick, England
[5] Univ York, Sch Phys Engn & Technol, York, England
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 159卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
GENERATION; POTENTIALS; DIAMOND; CARBON;
D O I
10.1063/5.0155621
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning (ML) methods are of rapidly growing interest for materials modeling, and yet, the use of ML interatomic potentials for new systems is often more demanding than that of established density-functional theory (DFT) packages. Here, we describe computational methodology to combine the CASTEP first-principles simulation software with the on-the-fly fitting and evaluation of ML interatomic potential models. Our approach is based on regular checking against DFT reference data, which provides a direct measure of the accuracy of the evolving ML model. We discuss the general framework and the specific solutions implemented, and we present an example application to high-temperature molecular-dynamics simulations of carbon nanostructures. The code is freely available for academic research.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Molecular dynamics study of thermal conductivities of cubic diamond, lonsdaleite, and nanotwinned diamond via machine-learned potential
    Xiong, Jia-Hao
    Qi, Zi-Jun
    Liang, Kang
    Sun, Xiang
    Sun, Zhan-Peng
    Wang, Qi-Jun
    Chen, Li-Wei
    Wu, Gai
    Shen, Wei
    CHINESE PHYSICS B, 2023, 32 (12)
  • [22] Molecular dynamics study of thermal conductivities of cubic diamond, lonsdaleite, and nanotwinned diamond via machine-learned potential
    熊佳豪
    戚梓俊
    梁康
    孙祥
    孙展鹏
    汪启军
    陈黎玮
    吴改
    沈威
    Chinese Physics B, 2023, (12) : 680 - 687
  • [23] Machine-learned electron densities of nucleic acids
    Lee, Alex J.
    Rackers, Joshua A.
    Bricker, William P.
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 499A - 499A
  • [24] Machine-learned potentials for eucryptite: A systematic comparison
    Hill, Jorg-Rudiger
    Mannstadt, Wolfgang
    JOURNAL OF MATERIALS RESEARCH, 2023, 38 (24) : 5188 - 5197
  • [25] Toward Requirements Specification for Machine-Learned Components
    Rahimi, Mona
    Guo, Jin L. C.
    Kokaly, Sahar
    Chechik, Marsha
    2019 IEEE 27TH INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE WORKSHOPS (REW 2019), 2019, : 241 - 244
  • [26] Machine-learned prediction of the electronic fields in a crystal
    Teh, Ying Shi
    Ghosh, Swarnava
    Bhattacharya, Kaushik
    MECHANICS OF MATERIALS, 2021, 163
  • [27] Machine-learned exclusion limits without binning
    Arganda, Ernesto
    Perez, Andres D.
    de los Rios, Martin
    Sanda Seoane, Rosa Maria
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (12):
  • [28] AMALEU: A Machine-Learned Universal Language Representation
    Costa-jussa, Marta R.
    PROCESAMIENTO DEL LENGUAJE NATURAL, 2020, (65): : 105 - 108
  • [29] Machine-learned exclusion limits without binning
    Ernesto Arganda
    Andres D. Perez
    Martín de los Rios
    Rosa María Sandá Seoane
    The European Physical Journal C, 83
  • [30] Machine-learned potentials for eucryptite: A systematic comparison
    Jörg-Rüdiger Hill
    Wolfgang Mannstadt
    Journal of Materials Research, 2023, 38 : 5188 - 5197