Machine-learned acceleration for molecular dynamics in CASTEP

被引:10
|
作者
Stenczel, Tamas K. [1 ]
El-Machachi, Zakariya [2 ]
Liepuoniute, Guoda [1 ]
Morrow, Joe D. [2 ]
Bartok, Albert P. [3 ,4 ]
Probert, Matt I. J. [5 ]
Csanyi, Gabor [1 ]
Deringer, Volker L. [2 ]
机构
[1] Univ Cambridge, Engn Lab, Cambridge CB2 1PZ, England
[2] Univ Oxford, Dept Chem, Inorgan Chem Lab, Oxford, England
[3] Univ Warwick, Dept Phys, Warwick, England
[4] Univ Warwick, Warwick Ctr Predict Modelling, Sch Engn, Warwick, England
[5] Univ York, Sch Phys Engn & Technol, York, England
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 159卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
GENERATION; POTENTIALS; DIAMOND; CARBON;
D O I
10.1063/5.0155621
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Machine learning (ML) methods are of rapidly growing interest for materials modeling, and yet, the use of ML interatomic potentials for new systems is often more demanding than that of established density-functional theory (DFT) packages. Here, we describe computational methodology to combine the CASTEP first-principles simulation software with the on-the-fly fitting and evaluation of ML interatomic potential models. Our approach is based on regular checking against DFT reference data, which provides a direct measure of the accuracy of the evolving ML model. We discuss the general framework and the specific solutions implemented, and we present an example application to high-temperature molecular-dynamics simulations of carbon nanostructures. The code is freely available for academic research.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Towards exact molecular dynamics simulations with machine-learned force fields
    Chmiela, Stefan
    Sauceda, Huziel
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [2] Towards exact molecular dynamics simulations with machine-learned force fields
    Chmiela, Stefan
    Sauceda, Huziel E.
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [3] Towards exact molecular dynamics simulations with machine-learned force fields
    Chmiela, Stefan
    Sauceda, Huziel E.
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    NATURE COMMUNICATIONS, 2018, 9
  • [4] Towards exact molecular dynamics simulations with machine-learned force fields
    Stefan Chmiela
    Huziel E. Sauceda
    Klaus-Robert Müller
    Alexandre Tkatchenko
    Nature Communications, 9
  • [5] Machine-Learned Kohn-Sham Hamiltonian Mapping for Nonadiabatic Molecular Dynamics
    Shakiba, Mohammad
    Akimov, Alexey V.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (08) : 2992 - 3007
  • [6] Thawed Gaussian Wavepacket Dynamics with Δ-Machine-Learned Potentials
    Gherib, Rami
    Ryabinkin, Ilya G.
    Genin, Scott N.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (42): : 9287 - 9301
  • [7] Understanding Strain and Failure of a Knot in Polyethylene Using Molecular Dynamics with Machine-Learned Potentials
    Dellostritto, Mark
    Klein, Michael L.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (35): : 9070 - 9077
  • [8] Development and evaluation of machine-learned interatomic potentials for carbon nanotubes for molecular dynamics simulations
    Choyal, Vijay
    Mishra, Saurabh
    Luhadiya, Nitin
    Kundalwal, S. I.
    CARBON LETTERS, 2025,
  • [9] Towards spectroscopic accuracy in molecular dynamics simulations with machine-learned CCSD(T) force fields
    Chmiela, Stefan
    Sauceda, Huziel
    Mueller, Klaus-Robert
    Tkatchenko, Alexandre
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [10] Machine-Learned Force Field for Molecular Dynamics Simulations of Nonequilibrium Ammonia Synthesis on Iron Catalysts
    Lele, Aditya Dilip
    Shi, Zhiyu
    Khetan, Shrey
    Carter, Emily A.
    Martirez, John Mark P.
    Ju, Yiguang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2025, 129 (10): : 4937 - 4949