Multi-Scale Depth-Aware Unsupervised Domain Adaption in Semantic Segmentation

被引:1
|
作者
Xing, Congying [1 ]
Zhang, Lefei [1 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Natl Engn Res Ctr Multimedia Software, Wuhan, Peoples R China
来源
2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN | 2023年
基金
中国国家自然科学基金;
关键词
Unsupervised Domain Adaptation; Semantic Segmentation; Depth Estimation; Multi-Task learning;
D O I
10.1109/IJCNN54540.2023.10191271
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation (UDA) for semantic segmentation aims to transfer the domain-invariant knowledge from the labeled source domain to the unlabeled target domain. Leveraging highly relevant tasks as auxiliary tasks has become a common approach to UDA tasks because it contributes to the mutual promotion of the tasks. However, when applying task interactions on a single scale, the model fails to perceive the overall context of the image. To address this issue, we propose a multi-scale depth-aware (Mti-DA) method for domain adaption. In particular, we use the channel attention mechanism to distill the task features and then fuse them with other task features as a complement. The semantic features will better perceive the shape and edges of the objects when they are enhanced by the depth features. We perform task interaction on every scale to deliver the full potential of multi-task learning. Exploiting the depth perception on each scale in the source domain to guide the target domain contributes to enhanced segmentation performance because the complementary relationships of different tasks in the target domain are available. Extensive experiments on two benchmarks (GTA5 to Cityscapes and SYNTHIA to Cityscapes) demonstrate that Mti-DA achieves state-of-the-art performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Boundary-Guided Lightweight Semantic Segmentation With Multi-Scale Semantic Context
    Zhou, Quan
    Wang, Linjie
    Gao, Guangwei
    Kang, Bin
    Ou, Weihua
    Lu, Huimin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 7887 - 7900
  • [22] BSAM: Bidirectional Scene-Aware Mixup for Unsupervised Domain Adaptation in Semantic Segmentation
    Xing, Congying
    Li, Gao
    Zhang, Lefei
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT I, 2022, 13604 : 54 - 66
  • [23] Efficient Multi-Scale Feature Extraction for Lightweight Semantic Segmentation
    Liu Y.
    Lu C.-Z.
    Li S.-J.
    Zhang L.
    Wu Y.-H.
    Cheng M.-M.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (07): : 1517 - 1528
  • [24] Multi-scale Semantic Segmentation Enriched Features for Pedestrian Detection
    Xie, Xiaolu
    Wang, Zengfu
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2196 - 2201
  • [25] Improved RGBD Semantic Segmentation Using Multi-Scale Features
    Gao, Xiaoning
    Cai, Meng
    Li, Jianxun
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 3531 - 3536
  • [26] Adaptive multi-scale dual attention network for semantic segmentation
    Wang, Weizhen
    Wang, Suyu
    Li, Yue
    Jin, Yishu
    NEUROCOMPUTING, 2021, 460 : 39 - 49
  • [27] Multi-Scale Recursive Context Aggregation Network for Semantic Segmentation
    Yalcin, Abdullah
    Keskinoz, Mehmet
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [28] Unsupervised Learning of Depth Estimation and Camera Pose With Multi-Scale GANs
    Xu, Yufan
    Wang, Yan
    Huang, Rui
    Lei, Zeyu
    Yang, Junyao
    Li, Zijian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (10) : 17039 - 17047
  • [29] Boosting Multi-Modal Unsupervised Domain Adaptation for LiDAR Semantic Segmentation by Self-Supervised Depth Completion
    Cardace, Adriano
    Conti, Andrea
    Ramirez, Pierluigi Zama
    Spezialetti, Riccardo
    Salti, Samuele
    Stefano, Luigi Di
    IEEE ACCESS, 2023, 11 : 85155 - 85164
  • [30] SAFENet: Semantic-Aware Feature Enhancement Network for unsupervised cross-domain road scene segmentation
    Ren, Dexin
    Li, Minxian
    Wang, Shidong
    Ren, Mingwu
    Zhang, Haofeng
    IMAGE AND VISION COMPUTING, 2024, 152