FINITENESS DIMENSIONS AND COFINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

被引:1
作者
Vahidi, Alireza [1 ]
Aghapournahr, Moharram [2 ]
Renani, Elahe Mahmoudi [1 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
[2] Arak Univ, Fac Sci, Dept Math, Arak 3815688349, Iran
来源
MATHEMATICAL REPORTS | 2023年 / 25卷 / 02期
关键词
cofinite modules; finiteness dimensions; generalized local cohomology modules; minimax modules; weakly Laskerian modules; GLOBAL PRINCIPLE; PRIMES; IDEALS;
D O I
10.59277/mrar.2023.25.75.2.349
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative Noetherian ring with non-zero identity, a an ideal of R, M a finite R-module, and n a non-negative integer. In this paper, for an arbitrary R-module X which is not necessarily finite, we prove the following results: (i) f(a)(n) (M, X) = inf{i is an element of N-0 : H-a(i)(M, X) is not an FD<n R-module} if Ext(R)(i)(M/aM, X) is an FD<n R-module for all i; (ii) f(a)(1) (M, X) = inf{i is an element of N-0 : H-a(i)(M, X) is not a minimax R-module} if Ext(R)(i)(M/aM, X) is finite for all i; (iii) f(a)(2) (M, X) = inf{i is an element of N-0 : H-a(i)(M, X) is not a weakly Laskerian R-module} if R is semi-local and Ext(R)(i)(M/aM, X) is finite for all i; (iv) H-a(i)(M, X) is a-cofinite for all i < f(a)(2)(M, X) and Ass(R)(H-a(f2a(M,X)) (M, X)) is finite if Ext(R)(i)(M/aM, X) is finite for all i <= f(a)(2) (M, X). Here, f(a)(n)(M, X) = inf{f(aRp) (M-p, X-p) : p is an element of Spec(R) and dim(R)(R/p) >= n} is the nth finiteness dimension of M and X with respect to a and f(a)(M, X) = inf{i is an element of N-0 : H-a(i)(M, X) is not a finite R-module} is the finiteness dimension of M and X with respect to a.
引用
收藏
页码:349 / 364
页数:16
相关论文
共 50 条
[41]   On the cofiniteness of generalized local cohomology modules with respect to the class of modules in dimension less than a fixed integer [J].
Vahidi, Alireza ;
Papari-Zarei, Mahdieh .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (08) :3423-3431
[42]   On the Finiteness Properties of Local Cohomology Modules for Regular Local Rings [J].
Sedghi, Monireh ;
Bahmanpour, Kamal ;
Naghipour, Reza .
TOKYO JOURNAL OF MATHEMATICS, 2017, 40 (01) :83-96
[43]   Associated primes and cofiniteness of local cohomology modules [J].
Mohammad T. Dibaei ;
Siamak Yassemi .
manuscripta mathematica, 2005, 117 :199-205
[44]   Matlis Duality and Finiteness Properties of Generalized Local Cohomology Modules [J].
Saremi, Hero .
ALGEBRA COLLOQUIUM, 2010, 17 (04) :637-646
[45]   COFINITENESS OF LOCAL COHOMOLOGY MODULES IN THE CLASS OF MODULES IN DIMENSION LESS THAN A FIXED INTEGER [J].
Vahidi, Alireza ;
Papari-Zarei, Mahdieh .
REVISTA DE LA UNION MATEMATICA ARGENTINA, 2021, 62 (01) :191-198
[46]   COFINITENESS AND COASSOCIATED PRIMES OF LOCAL COHOMOLOGY MODULES [J].
Aghapournahr, Moharram ;
Melkersson, Leif .
MATHEMATICA SCANDINAVICA, 2009, 105 (02) :161-170
[47]   Some results on the cofiniteness of local cohomology modules [J].
Sohrab Sohrabi Laleh ;
Mir Yousef Sadeghi ;
Mahdi Hanifi Mostaghim .
Czechoslovak Mathematical Journal, 2012, 62 :105-110
[48]   Some results on the cofiniteness of local cohomology modules [J].
Laleh, Sohrab Sohrabi ;
Sadeghi, Mir Yousef ;
Mostaghim, Mahdi Hanifi .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (01) :105-110
[49]   Associated primes and cofiniteness of local cohomology modules [J].
Dibaei, MT ;
Yassemi, S .
MANUSCRIPTA MATHEMATICA, 2005, 117 (02) :199-205
[50]   Local Cohomology, Cofiniteness and Homological Functors of Modules [J].
Bahmanpour, Kamal .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (02) :541-558