FINITENESS DIMENSIONS AND COFINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

被引:1
作者
Vahidi, Alireza [1 ]
Aghapournahr, Moharram [2 ]
Renani, Elahe Mahmoudi [1 ]
机构
[1] Payame Noor Univ, Dept Math, Tehran, Iran
[2] Arak Univ, Fac Sci, Dept Math, Arak 3815688349, Iran
来源
MATHEMATICAL REPORTS | 2023年 / 25卷 / 02期
关键词
cofinite modules; finiteness dimensions; generalized local cohomology modules; minimax modules; weakly Laskerian modules; GLOBAL PRINCIPLE; PRIMES; IDEALS;
D O I
10.59277/mrar.2023.25.75.2.349
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative Noetherian ring with non-zero identity, a an ideal of R, M a finite R-module, and n a non-negative integer. In this paper, for an arbitrary R-module X which is not necessarily finite, we prove the following results: (i) f(a)(n) (M, X) = inf{i is an element of N-0 : H-a(i)(M, X) is not an FD<n R-module} if Ext(R)(i)(M/aM, X) is an FD<n R-module for all i; (ii) f(a)(1) (M, X) = inf{i is an element of N-0 : H-a(i)(M, X) is not a minimax R-module} if Ext(R)(i)(M/aM, X) is finite for all i; (iii) f(a)(2) (M, X) = inf{i is an element of N-0 : H-a(i)(M, X) is not a weakly Laskerian R-module} if R is semi-local and Ext(R)(i)(M/aM, X) is finite for all i; (iv) H-a(i)(M, X) is a-cofinite for all i < f(a)(2)(M, X) and Ass(R)(H-a(f2a(M,X)) (M, X)) is finite if Ext(R)(i)(M/aM, X) is finite for all i <= f(a)(2) (M, X). Here, f(a)(n)(M, X) = inf{f(aRp) (M-p, X-p) : p is an element of Spec(R) and dim(R)(R/p) >= n} is the nth finiteness dimension of M and X with respect to a and f(a)(M, X) = inf{i is an element of N-0 : H-a(i)(M, X) is not a finite R-module} is the finiteness dimension of M and X with respect to a.
引用
收藏
页码:349 / 364
页数:16
相关论文
共 50 条
[31]   COFINITENESS AND NON-VANISHING OF LOCAL COHOMOLOGY MODULES [J].
Bagheriyeh, Iraj ;
Bahmanpour, Kamal ;
A'Zami, Jafar .
JOURNAL OF COMMUTATIVE ALGEBRA, 2014, 6 (03) :305-321
[32]   Cofiniteness of local cohomology modules for ideals of small dimension [J].
Bahmanpour, Kamal ;
Naghipour, Reza .
JOURNAL OF ALGEBRA, 2009, 321 (07) :1997-2021
[33]   Cofiniteness and Artinianness of certain local cohomology modules [J].
Aghapournahr M. ;
Ahmadi-amoli K. ;
Sadeghi M.Y. .
Ricerche di Matematica, 2016, 65 (1) :21-36
[34]   On the cofiniteness of Artinian local cohomology modules [J].
Ghasemi, Ghader ;
Bahmanpour, Kamal ;
A'zami, Jafar .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (04)
[35]   Cofiniteness of composed local cohomology modules [J].
Mafi, Amir .
FORUM MATHEMATICUM, 2013, 25 (01) :173-178
[36]   Cofiniteness of top local cohomology modules [J].
Alireza Vahidi ;
Nematollah Shirmohammadi ;
Akram Mahmoodi .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2024, 118
[37]   On the generalized local cohomology of minimax modules [J].
Roshan-Shekalgourabi, H. ;
Hassanzadeh-Lelekaami, D. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (08)
[38]   Cofiniteness of generalized local cohomology modules with respect to the class of modules in dimension less than a fixed integer [J].
Vahidi, Alireza ;
Papari-Zarei, Mahdieh .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2022, 28 (05) :615-631
[39]   Local homology, finiteness of Tor modules and cofiniteness [J].
Divaani-Aazar, K. ;
Faridian, H. ;
Tousi, M. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (12)
[40]   Cofiniteness of local cohomology modules over Noetherian local rings [J].
Bagheriyeh, Iraj ;
A'zami, Jafar ;
Bahmanpour, Kamal .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2015, 22 (05) :715-724