Machine learning-based prognostic modeling of patients with acute heart failure receiving furosemide in intensive care units

被引:2
作者
Kamio, Tadashi [1 ]
Ikegami, Masaru [2 ]
Machida, Yoshihito [2 ]
Uemura, Tomoko [2 ]
Chino, Naotaka [2 ]
Iwagami, Masao [3 ,4 ,5 ]
机构
[1] Shonan Kamakura Gen Hosp, Div Crit Care, 1370-1 Okamoto, Kamakura, Kanagawa 2478533, Japan
[2] Shonan Ctr, Terumo Corp R & D Ctr, Ashigarakami, Kanagawa, Japan
[3] Univ Tsukuba, Dept Hlth Serv Res, Ibaraki, Japan
[4] Univ Tsukuba, Hlth Serv Res & Dev Ctr, Ibaraki, Japan
[5] London Sch Hyg & Trop Med, Fac Epidemiol & Populat Hlth, London, England
关键词
Machine learning models; acute heart failure; furosemide; intensive care units; ACUTE KIDNEY INJURY; PREDICTION; MORTALITY; DIAGNOSIS;
D O I
10.1177/20552076231194933
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
PurposeThis study developed machine learning models to predict in-hospital mortality, initiation of acute renal replacement therapy, and mechanical ventilation in patients with acute heart failure receiving furosemide in intensive care units. MethodAn extensive database comprising static and dynamic features obtained from a Japanese hospital chain was used to construct and train the machine learning models. ResultsThe results revealed that the proposed machine learning models predict in-hospital mortality, initiation of acute renal replacement therapy, and mechanical ventilation with good accuracy. However, the optimal models vary depending on the predicted outcomes. The linear support vector machine classification models exhibited the highest in-hospital mortality and mechanical ventilation prediction accuracy, with the area under the receiver operating characteristic curve of 0.73 and 0.73, respectively, whereas the multi-layer neural network exhibited the highest accuracy for acute renal replacement therapy initiation prediction with an area under the receiver operating characteristic curve of 0.70. ConclusionsIn conclusion, this study demonstrated that machine learning models could help predict the clinical outcomes of patients with acute heart failure receiving furosemide. However, the optimal models may differ depending on the outcome of interest.
引用
收藏
页数:12
相关论文
共 24 条
[1]   Determinants of Outcomes of Acute Kidney Injury: Clinical Predictors and Beyond [J].
Abdel-Rahman, Emaad M. ;
Turgut, Faruk ;
Gautam, Jitendra K. ;
Gautam, Samir C. .
JOURNAL OF CLINICAL MEDICINE, 2021, 10 (06) :1-15
[2]   Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction [J].
Angraal, Suveen ;
Mortazavi, Bobak J. ;
Gupta, Aakriti ;
Khera, Rohan ;
Ahmad, Tariq ;
Desai, Nihar R. ;
Jacoby, Daniel L. ;
Masoudi, Frederick A. ;
Spertus, John A. ;
Krumholz, Harlan M. .
JACC-HEART FAILURE, 2020, 8 (01) :12-21
[3]   Machine learning versus conventional clinical methods in guiding management of heart failure patients-a systematic review [J].
Bazoukis, George ;
Stavrakis, Stavros ;
Zhou, Jiandong ;
Bollepalli, Sandeep Chandra ;
Tse, Gary ;
Zhang, Qingpeng ;
Singh, Jagmeet P. ;
Armoundas, Antonis A. .
HEART FAILURE REVIEWS, 2021, 26 (01) :23-34
[4]   Machine Learning and Prediction in Medicine - Beyond the Peak of Inflated Expectations [J].
Chen, Jonathan H. ;
Asch, Steven M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (26) :2507-2509
[5]   Guideline-Directed Medical Therapy for Patients With Heart Failure With Midrange Ejection Fraction: A Patient-Pooled Analysis From the KorHF and KorAHF Registries [J].
Choi, Ki Hong ;
Choi, Jin-Oh ;
Jeon, Eun-Seok ;
Lee, Ga Yeon ;
Choi, Dong-Ju ;
Lee, Hae-Young ;
Kim, Jae-Joong ;
Chae, Shung Chull ;
Baek, Sang Hong ;
Kang, Seok-Min ;
Yoo, Byung-Su ;
Kim, Kye Hun ;
Cho, Myeong-Chan ;
Park, Hyun-Young ;
Oh, Byung-Hee .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2018, 7 (21)
[6]   Using machine learning models to predict the initiation of renal replacement therapy among chronic kidney disease patients [J].
Dovgan, Erik ;
Gradisek, Anton ;
Lustrek, Mitja ;
Uddin, Mohy ;
Nursetyo, Aldilas Achmad ;
Annavarajula, Sashi Kiran ;
Li, Yu-Chuan ;
Syed-Abdul, Shabbir .
PLOS ONE, 2020, 15 (06)
[7]   A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data [J].
Golas, Sara Bersche ;
Shibahara, Takuma ;
Agboola, Stephen ;
Otaki, Hiroko ;
Sato, Jumpei ;
Nakae, Tatsuya ;
Hisamitsu, Toru ;
Kojima, Go ;
Felsted, Jennifer ;
Kakarmath, Sujay ;
Kvedar, Joseph ;
Jethwani, Kamal .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2018, 18
[8]   Role of Guideline Directed Medical Therapy Doses and Optimization in Patients Hospitalized With Decompensated Systolic Heart Failure [J].
Grewal, Dennis ;
Partow-Navid, Rod ;
Garcia, Dante ;
Coney, Joshua ;
Fraser, Gary ;
Stoletniy, Liset ;
Sakr, Antoine ;
Parwani, Purvi ;
Abramov, Dmitry .
AMERICAN JOURNAL OF CARDIOLOGY, 2021, 151 :64-69
[9]   eDoctor: machine learning and the future of medicine [J].
Handelman, G. S. ;
Kok, H. K. ;
Chandra, R. V. ;
Razavi, A. H. ;
Lee, M. J. ;
Asadi, H. .
JOURNAL OF INTERNAL MEDICINE, 2018, 284 (06) :603-619
[10]   Seasonality of acute kidney injury incidence and mortality among hospitalized patients [J].
Iwagami, Masao ;
Moriya, Hidekazu ;
Doi, Kent ;
Yasunaga, Hideo ;
Isshiki, Rei ;
Sato, Izumi ;
Mochida, Yasuhiro ;
Ishioka, Kunihiro ;
Ohtake, Takayasu ;
Hidaka, Sumi ;
Noiri, Eisei ;
Kobayashi, Shuzo .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2018, 33 (08) :1354-1362