Coalitional Federated Learning: Improving Communication and Training on Non-IID Data With Selfish Clients

被引:10
|
作者
Arisdakessian, Sarhad [1 ]
Wahab, Omar Abdel [1 ]
Mourad, Azzam [2 ]
Otrok, Hadi [3 ]
机构
[1] Polytech Montreal, Dept Comp Engn & Software Engn, Montreal, PQ H3T 1J4, Canada
[2] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 11022801, Lebanon
[3] Khalifa Univ, Dept EECS, Abu Dhabi 127788, U Arab Emirates
基金
加拿大自然科学与工程研究理事会;
关键词
Servers; Federated learning; Training; Data models; Computational modeling; Games; Convergence; Client selection; communication efficiency; federated learning; non-IID data; security; selfish client;
D O I
10.1109/TSC.2023.3246988
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we propose a new paradigm of Federated Learning (FL) for Internet of Things (IoT) devices called Coalitional Federated Learning. The proposed paradigm aims to address the challenges of (1) non-independent and identically distributed (non-IID) data across clients; (2) communication overhead due to the large number of messages exchanged between the server and clients; and (3) selfish clients that seek to obtain the latest global models without efficiently contributing to the training of the FL model. Our novel paradigm consists of three main components, i.e., (1) client-to-client trust establishment mechanism that relies on subjective and objective sources to enable clients to establish credible trust relationships toward one another; (2) trust-enabled coalitional game to enable clients to autonomously form harmonious coalitions of FL trainers; and (3) coalitional federated learning in which multiple local aggregations take place at the level of each coalition to mitigate the problems of non-IID data and communication bottleneck. Extensive experiments suggest that our solution outperforms both the standard vanilla FL approach and one state-of-the-art trust-based FL approach in terms of increasing the accuracy of the global FL model and decreasing the presence of selfish devices participating in the training.
引用
收藏
页码:2462 / 2476
页数:15
相关论文
共 50 条
  • [21] Feature Matching Data Synthesis for Non-IID Federated Learning
    Li, Zijian
    Sun, Yuchang
    Shao, Jiawei
    Mao, Yuyi
    Wang, Jessie Hui
    Zhang, Jun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9352 - 9367
  • [22] Federated Learning with GAN-Based Data Synthesis for Non-IID Clients
    Li, Zijian
    Shao, Jiawei
    Mao, Yuyi
    Wang, Jessie Hui
    Zhang, Jun
    TRUSTWORTHY FEDERATED LEARNING, FL 2022, 2023, 13448 : 17 - 32
  • [23] Dual Adversarial Federated Learning on Non-IID Data
    Zhang, Tao
    Yang, Shaojing
    Song, Anxiao
    Li, Guangxia
    Dong, Xuewen
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2022, PT III, 2022, 13370 : 233 - 246
  • [24] Fast converging Federated Learning with Non-IID Data
    Naas, Si -Ahmed
    Sigg, Stephan
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [25] Logit Calibration and Feature Contrast for Robust Federated Learning on Non-IID Data
    Qiao, Yu
    Zhang, Chaoning
    Adhikary, Apurba
    Hong, Choong Seon
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2025, 12 (02): : 636 - 652
  • [26] Dynamic Clustering Federated Learning for Non-IID Data
    Chen, Ming
    Wu, Jinze
    Yin, Yu
    Huang, Zhenya
    Liu, Qi
    Chen, Enhong
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT III, 2022, 13606 : 119 - 131
  • [27] Federated Analytics Informed Distributed Industrial IoT Learning With Non-IID Data
    Wang, Zibo
    Zhu, Yifei
    Wang, Dan
    Han, Zhu
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 2924 - 2939
  • [28] FedPKR: Federated Learning With Non-IID Data via Periodic Knowledge Review in Edge Computing
    Wang, Jinbo
    Wang, Ruijin
    Xu, Guangquan
    He, Donglin
    Pei, Xikai
    Zhang, Fengli
    Gan, Jie
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (06): : 902 - 912
  • [29] Adaptive Federated Learning With Non-IID Data
    Zeng, Yan
    Mu, Yuankai
    Yuan, Junfeng
    Teng, Siyuan
    Zhang, Jilin
    Wan, Jian
    Ren, Yongjian
    Zhang, Yunquan
    COMPUTER JOURNAL, 2023, 66 (11) : 2758 - 2772
  • [30] FlGan: GAN-Based Unbiased Federated Learning Under Non-IID Settings
    Ma, Zhuoran
    Liu, Yang
    Miao, Yinbin
    Xu, Guowen
    Liu, Ximeng
    Ma, Jianfeng
    Deng, Robert H.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1566 - 1581